
Grammatical Evolution for

Quantum Algorithms

Arinze Obidiegwu

Lero - The SFI Research Centre for Software

Faculty of Science & Engineering

Department of Computer Science & Information Systems

University of Limerick

Submitted to the University of Limerick for the degree of

Master of Science (MSc) in Artificial Intelligence and Machine Learning

2025

mailto:23271892@studentmail.ul.ie
https://lero.ie
https://www.ul.ie/scieng
https://www.ul.ie/scieng/schools-and-departments/department-computer-science-and-information-systems
http://www.ul.ie

ii

Supervisor: Prof. Conor Ryan

Lero – the Research Ireland Centre for Software

University of Limerick

Ireland

Supervisor: Dr. Douglas Mota Dias

Department of Computer Science & Applied Physics

Atlantic Technological University

Ireland

iii

iv

Abstract

As quantum computing progresses toward practical application, a key challenge

remains: designing quantum circuits that are both accurate and hardware-efficient,

particularly for noisy intermediate-scale quantum (NISQ) devices. This disserta-

tion investigates a novel method for automatically generating optimised quantum

circuits for Grover’s algorithm using Grammatical Evolution (GE) a flexible, bio-

inspired search technique capable of producing circuits from first principles.

A hybrid pipeline is developed in which GE is used to explore the quan-

tum circuit design space in classical simulation, while the best candidate cir-

cuits are validated on real superconducting quantum hardware. The approach

is first benchmarked using the Deutsch-Jozsa algorithm to demonstrate that GE

can evolve functional and generalisable quantum structures. The main contribu-

tion, however, lies in evolving dedicated, high-fidelity Grover circuits for various

marked states, using a grammar tailored to native hardware operations and a

fitness function that balances accuracy with gate efficiency.

The results show that the evolved circuits outperform standard Grover imple-

mentations in terms of both fidelity and resource usage when executed on IBM’s

quantum devices. In many cases, the evolved circuits amplify the target state

with near-ideal probabilities, using fewer gates than canonical constructions — a

significant advantage for real-world deployment on error-prone hardware.

These findings suggest that evolutionary techniques like GE offer a powerful

pathway for automated quantum circuit design. They provide evidence that such

methods can yield bespoke quantum algorithms that are not only theoretically

sound but also practically executable on today’s quantum hardware.

v

Declaration

I herewith declare that I have produced this paper without the pro-

hibited assistance of third parties and without making use of aids

other than those specified; notions taken over directly or indirectly

from other sources have been identified as such. This paper has not

previously been presented in identical or similar form to any other

Irish or foreign examination board.

The thesis work was conducted from 2024 to 2025 under the supervi-

sion of Professor Conor Ryan and Dr. Douglas Mota Dias at Univer-

sity of Limerick.

Limerick, August 2025

Acknowledgements

This thesis represents not just my academic journey, but the culmi-

nation of countless sacrifices, unwavering support, and profound love

from those who believed in me.

First and foremost, I owe an immeasurable debt of gratitude to my

elder brother Emmanuel Obidiegwu, whose selfless dedication made

this entire journey possible. You carried me on your shoulders, ensur-

ing I never lacked anything, sacrificing your own comfort so I could

pursue my dreams. Every page of this thesis exists because of your un-

wavering support and belief in me. Words cannot adequately express

my gratitude for everything you have done.

To my supervisors, Professor Conor Ryan and Dr. Douglas Mota

Dias, thank you for your exceptional guidance and mentorship. Conor,

working with the inventor of Grammatical Evolution himself has been

an incredible privilege. Your pioneering spirit and deep insights shaped

not just this research, but my understanding of what it means to

push boundaries in science. Douglas, your thoughtful guidance and

constant encouragement helped me navigate the complexities of this

work. Both of you gave me the freedom to express myself creatively

while providing the structure and wisdom I needed to succeed. Thank

you for believing in my ideas and helping me transform them into

meaningful contributions.

To my family, thank you for your endless love, support, and encourage-

ment throughout this journey. Your faith in me has been a constant

source of strength.

To my father, thank you for instilling in me the value of education

and the determination to succeed. Together with mom, you both

created a foundation of learning and ambition that has carried me to

this moment. Your unwavering belief in the power of education and

your dreams for my success have been guiding lights throughout my

academic journey.

Finally, to my mother, who left us when I was thirteen but whose

impact on my life remains immeasurable. You taught me resilience,

curiosity, and the importance of education in the brief time we had

together. Every achievement in my life carries your memory within

it. I hope that somewhere, somehow, you can see what your son has

accomplished and that I have made you proud. This thesis is as much

yours as it is mine.

Data Source and Generative

AI Declaration

Data Sources

All quantum circuits were executed on IBM Quantum Network’s

ibm brisbane backend, accessed through the IBM Quantum cloud

services. Simulation data was generated using Qiskit Aer’s quantum

circuit simulator. No external datasets were used in this research; all

experimental data was generated through evolutionary runs and

quantum circuit executions.

Use of Generative AI Tools

During the preparation of this dissertation, Claude (Anthropic) was

used as an assistive tool for:

• Grammar and style improvements in manuscript writing

• LaTeX formatting and bibliography management

• Code documentation and commenting

All scientific content, experimental design, implementation, analysis,

and conclusions are entirely my own original work. Generative AI

was used solely as a writing and formatting assistant, similar to

grammar checking tools. All code for the Grammatical Evolution

v

framework, circuit synthesis, and experimental validation was

written independently without AI assistance.

Contents

Abstract v

Data Source and Generative AI Declaration v

List of Tables xi

List of Figures xiii

1 Introduction 1

1.1 Background and Motivation . 1

1.2 Aims and Objectives . 2

1.3 Methodology . 2

1.4 Research Contribution . 3

1.5 Thesis Outline . 3

1.6 Summary . 4

2 Background 5

2.1 Quantum Algorithms Overview 5

2.1.1 Deutsch–Jozsa Algorithm 5

2.1.2 Grover’s Search Algorithm 6

2.2 Grammatical Evolution . 7

2.2.1 GE for Quantum Circuit Synthesis 9

2.3 Compilation and Transpilation in NISQ Devices 9

2.3.1 Compilation Pipeline . 10

2.3.2 Transpilation Challenges 10

2.4 Related Work on Circuit Synthesis 11

2.5 Summary . 12

vii

CONTENTS

3 Methodology 15

3.1 Framework Overview . 15

3.2 Deutsch–Jozsa Proof-of-Concept 16

3.2.1 Grammar for DJ Circuits 16

3.2.2 Fitness Function for DJ 16

3.3 Grover Circuit Synthesis . 18

3.3.1 Grammar Design for Grover Circuits 18

3.3.2 Fitness Function for Grover Circuits 19

3.4 Toolchain and Evaluation Stack 20

4 Experimental Setup 23

4.1 Grover Circuit Configuration . 23

4.1.1 Baseline: Canonical Grover via Qiskit 24

4.1.2 Evolved: Symbolically Generated Circuits 24

4.2 Hardware Configuration . 25

4.3 Simulation Environment . 25

4.4 Evaluation Metrics . 26

4.5 Deutsch–Jozsa Experiment (Simulator Only) 27

5 Results and Analysis 29

5.1 Grover: Baseline vs Evolved Performance 29

5.2 Gate Decomposition of Evolved Circuits 31

5.3 Circuit Visualisation Examples 32

5.4 Deutsch–Jozsa Simulation Results 33

6 Conclusions and Future Directions 35

6.1 Summary . 35

6.2 Conclusions . 36

6.3 Contributions . 37

6.4 Future Work . 38

References 41

Appendix A: BNF Grammar Definitions 43

Appendix B: Deutsch-Jozsa Experimental Results 49

viii

CONTENTS

Appendix C: Code and Circuit Listings 51

Appendix D: Transpiled Circuit Visualizations 55

Appendix E: GE in Quantum Machine Learning 59

ix

CONTENTS

x

List of Tables

5.1 Hardware fidelity and resource comparison across all 3-qubit basis

states. Evolved circuits consistently outperform standard Grover

implementations in fidelity, depth, and gate efficiency. 30

5.2 Post-transpilation gate metrics for evolved circuits targeting each

3-qubit marked state. 32

xi

LIST OF TABLES

xii

List of Figures

2.1 Illustration of genotype-to-phenotype mapping in grammatical evo-

lution for quantum circuits. 8

3.1 Grammatical Evolution workflow for quantum circuit synthesis.

Integer genomes are decoded into quantum programs via grammar

rules and evaluated through simulation and hardware execution. . 17

5.1 Transpiled circuit for evolved |000⟩ targeting ibm brisbane. This

highly optimised circuit achieves 94.8% fidelity using only 21 gates

with depth 11, compared to the canonical Grover’s 283 gates with

depth 177. 32

5.2 Transpiled circuit for evolved |010⟩ targeting ibm brisbane. The

most efficient evolved circuit with only 18 gates and depth 10,

achieving the second-highest fidelity of 96.1%. 33

5.3 Transpiled circuit for evolved |111⟩ targeting ibm brisbane. De-

spite targeting the all-ones state, this circuit maintains exceptional

efficiency with 20 gates and depth 11, achieving 95.5% fidelity. . . 33

5.4 Convergence of best fitness and invalid individuals across genera-

tions (DJ task). 34

1 Evolved DJ Circuit with constant0 oracle 49

2 Histogram result for constant0 . 50

3 Evolved DJ Circuit with balanced0to1 oracle 50

4 Histogram result for balanced0to1 50

5 Full transpiled circuit for evolved |000⟩. 55

6 Full transpiled circuit for evolved |001⟩. 56

xiii

LIST OF FIGURES

7 Full transpiled circuit for evolved |010⟩. 56

8 Full transpiled circuit for evolved |011⟩. 56

9 Full transpiled circuit for evolved |100⟩. 57

10 Full transpiled circuit for evolved |101⟩. 57

11 Full transpiled circuit for evolved |110⟩. 57

12 Full transpiled circuit for evolved |111⟩. 58

xiv

1

Introduction

This chapter introduces the core research motivations behind this work and po-

sitions it within the broader context of quantum computing. It outlines the

challenges posed by current quantum hardware, presents the main research ques-

tion, and explains the aims and contributions of using grammatical evolution to

automate circuit design. It also provides a roadmap of the dissertation structure

to guide the reader through the following chapters.

1.1 Background and Motivation

Quantum computing promises exponential speed-ups over classical systems for

problems such as integer factorisation and unstructured search. However, current

quantum hardware, commonly referred to as Noisy Intermediate-Scale Quantum

(NISQ) devices, is constrained by limited qubit counts, gate infidelity, and noise-

induced decoherence (Preskill, 2018). Strict constraints on circuit depth and

fidelity make the efficient design of quantum circuits a critical challenge.

Circuit synthesis, the task of designing executable quantum programmes for

specific logical functions, has become an active research area. While textbook

algorithms like Grover’s and Deutsch–Jozsa offer theoretical speed-ups (Deutsch

and Jozsa, 1992; Grover, 1996), their canonical circuits, the standard implemen-

tations derived from mathematical proofs and widely taught in quantum com-

puting courses, are not optimised for real hardware execution. These canonical

constructions prioritise mathematical elegance and pedagogical clarity over prac-

1

1. INTRODUCTION

tical considerations such as gate count minimisation and noise resilience. This

dissertation addresses that gap using grammatical evolution (GE), a symbolic evo-

lutionary search technique that generates quantum circuits using rules defined in

a formal grammar. Our approach achieves up to 94% reduction in circuit depth

and 40% improvement in fidelity compared to standard implementations when

executed on real quantum hardware.

1.2 Aims and Objectives

The central research question addressed in this dissertation is:

Can grammatical evolution be used to automatically synthesise quan-

tum circuits that outperform standard algorithmic constructions in

terms of depth, gate count, and fidelity when executed on real quan-

tum hardware?

To investigate this, the dissertation pursues the following objectives:

• To design and implement a grammar-guided symbolic search pipeline capa-

ble of generating valid quantum circuits for a given computational task.

• To assess the approach on Grover’s algorithm across all 3-qubit marked

states, comparing evolved circuits against canonical Qiskit implementations

on actual IBM hardware (IBM Quantum, 2023).

• To provide an auxiliary benchmark using the Deutsch–Jozsa algorithm,

demonstrating generalisability under simulated execution.

1.3 Methodology

This work adopts a bottom-up, data-driven approach to quantum programme

synthesis. A formal grammar defines the allowable circuit constructs, and gram-

matical evolution (GE) is used to iteratively evolve candidate circuits. Fitness

evaluation is based on output fidelity and gate count, with circuit depth tracked

2

1.4 Research Contribution

for analysis. Hardware-specific constraints are implicitly handled via transpi-

lation and execution on IBM’s superconducting backend, ibm brisbane (IBM

Quantum, 2023).

For Grover’s algorithm, evolved circuits were generated across all eight possi-

ble 3-qubit marked states. The top-performing individuals were then transpiled

and executed on IBM’s quantum hardware to assess fidelity and gate efficiency

under real-device conditions. Baseline comparisons were made using Qiskit’s

standard Grover circuits (IBM Quantum, 2023).

For Deutsch–Jozsa, evolved circuits were tested using Qiskit’s simulator to

validate functional correctness under ideal conditions, as the focus was on sym-

bolic generalisation rather than hardware deployment.

1.4 Research Contribution

The primary research contributions of this dissertation are:

• Demonstration that grammatical evolution can automatically synthesise

shallow, hardware-efficient circuits that outperform canonical Grover im-

plementations in fidelity, gate count, and depth.

• Introduction of a grammar-guided pipeline for quantum circuit design that

operates without requiring explicit calibration or noise modelling, yet adapts

effectively to real-device constraints.

• Validation of generalisability through a secondary implementation of the

Deutsch–Jozsa algorithm, reinforcing the viability of symbolic synthesis for

quantum programming.

1.5 Thesis Outline

The remaining chapters of this dissertation are structured as follows:

Chapter 2 provides technical background on Grover and Deutsch–Jozsa algo-

rithms, grammatical evolution, and quantum circuit transpilation. It also reviews

related work on quantum programme synthesis.

3

1. INTRODUCTION

Chapter 3 details the methodology, including the design of the grammar,

fitness function, evolutionary parameters, and toolchain configuration.

Chapter 4 outlines the experimental setup for both Grover and Deutsch–Jozsa

experiments, including hardware, simulators, and performance metrics.

Chapter 5 presents the experimental results and comparative analysis between

evolved and standard circuits across multiple criteria.

Chapter 6 concludes the study, highlighting key findings and suggesting direc-

tions for future research, including extensions to noise-aware synthesis, grammar

refinement, and multi-objective optimisation strategies.

Appendices provide supplementary materials as follows:

• Appendix 6.4 contains the full formal grammar used for circuit synthesis.

• Appendix 6.4 presents circuit diagrams and result histograms for Deutsch–Jozsa

experiments.

• Appendix 6.4 includes relevant code listings and auxiliary derivations.

1.6 Summary

This chapter introduced the motivation and aims of the dissertation, grounded in

the challenges of executing quantum algorithms on NISQ hardware. It positioned

grammatical evolution as a promising method for synthesising efficient quantum

circuits and laid out the scope, methodology, and structure of the work. The fol-

lowing chapter provides the technical background needed to understand quantum

circuits, GE, and the synthesis pipeline in detail.

4

2

Background

This chapter provides the theoretical foundation and prior work necessary to

understand the contributions of this dissertation. It introduces the key quan-

tum algorithms under consideration Deutsch–Jozsa and Grover followed by an

overview of Grammatical Evolution (GE) as a symbolic circuit synthesis tech-

nique. It also examines compilation and transpilation issues specific to Noisy

Intermediate-Scale Quantum (NISQ) devices and reviews related approaches in

automated quantum program generation.

2.1 Quantum Algorithms Overview

Quantum algorithms exploit the fundamental features of quantum mechanics such

as superposition, entanglement, and interference to provide computational advan-

tages over classical methods. Among the earliest and most instructive examples

are the Deutsch–Jozsa and Grover algorithms. These two algorithms not only

illustrate the power of quantum computation but also serve as canonical bench-

marks for evaluating the performance and feasibility of algorithms on real quan-

tum devices.

2.1.1 Deutsch–Jozsa Algorithm

The Deutsch–Jozsa (DJ) algorithm was one of the first to demonstrate an ex-

ponential advantage of quantum computation over classical methods (Deutsch

and Jozsa, 1992). It addresses the problem of determining whether a Boolean

5

2. BACKGROUND

function f : {0, 1}n → {0, 1} is constant (returns the same value for all inputs)

or balanced (returns 0 for half of all inputs and 1 for the other half). Classically,

this requires evaluating the function on at least 2n−1+1 inputs in the worst case.

The DJ algorithm, in contrast, can solve this problem with a single oracle query

by leveraging quantum parallelism.

While DJ is not known for practical applications, it remains a foundational

example due to its conceptual simplicity and early demonstration of quantum

advantage. It also presents a testbed for exploring function evaluation, oracle

construction, and circuit validation under symbolic program synthesis frameworks

like GE.

2.1.2 Grover’s Search Algorithm

Grover’s algorithm (Grover, 1996) offers a quadratic speed-up for unstructured

search problems. It is designed to find a unique input x⋆ such that a Boolean

function f(x⋆) = 1, where f : {0, 1}n → {0, 1} and f(x) = 0 for all other

x. Classically, this would require O(N) queries for N = 2n items. Grover’s

algorithm reduces this to O(
√
N) queries.

The algorithm consists of repeated applications of two main components:

• Oracle Of : A unitary operator that inverts the amplitude of the marked

solution state. In practice, this is implemented using a combination of

multi-controlled Toffoli or Z gates to encode the target bit-string.

• Diffusion Operator: Also known as the Grover Iterate or Inversion-

About-the-Mean, this operator increases the probability amplitude of the

marked state by reflecting all amplitudes about their average.

The number of Grover iterations k required is given by k =
⌊
π
4

√
2n
⌋
. For

n = 3, this evaluates to a single iteration.

Despite its theoretical efficiency, the standard Grover circuit is deep and gate-

intensive, making it prone to noise and decoherence on current NISQ hardware.

Therefore, Grover’s algorithm is frequently used as a benchmark for hardware-

aware circuit optimisation strategies, including the GE-based synthesis proposed

in this work.

6

2.2 Grammatical Evolution

The fundamental limitation of canonical Grover circuits lies in their

hand-crafted, one-size-fits-all design philosophy. These circuits are derived

from mathematical proofs that prioritise theoretical elegance and universal ap-

plicability they use the same circuit template regardless of which specific state

is being searched for. This approach, while mathematically sound, creates un-

necessarily complex circuits that must encode general-purpose logic capable of

marking any arbitrary state. In contrast, the bottom-up symbolic approach pro-

posed in this work evolves bespoke circuits tailored to each specific target state.

By specialising the circuit structure to the particular marked state, evolved cir-

cuits can eliminate redundant gates and achieve significantly shallower, leaner

implementations that naturally align better with hardware constraints.

2.2 Grammatical Evolution

Grammatical Evolution (GE) is a form of evolutionary computation that com-

bines genetic algorithms with formal grammar representations to evolve syntacti-

cally valid programs (Ryan et al., 1998). Unlike tree-based Genetic Programming,

GE introduces a genotype–phenotype distinction, where linear integer strings

(genotypes) are mapped to syntactic programs (phenotypes) using production

rules defined in a Backus–Naur Form (BNF) grammar.

This approach offers several advantages:

• It decouples the search and representation layers, allowing grammar changes

without altering the underlying evolutionary machinery.

• The use of formal grammars ensures that only syntactically valid outputs

are generated.

• Expert knowledge can be embedded into the grammar to shape the search

space meaningfully.

GE is particularly well-suited for symbolic domains like quantum program-

ming, where valid syntax, logical structure, and domain-specific constraints are

critical.

7

2. BACKGROUND

Figure 2.1: Illustration of genotype-to-phenotype mapping in grammatical evo-

lution for quantum circuits.

8

2.3 Compilation and Transpilation in NISQ Devices

2.2.1 GE for Quantum Circuit Synthesis

The use of GE for quantum circuit design offers unique advantages in the NISQ

context:

• Validity: Circuits are always syntactically correct due to grammar-based

generation.

• Interpretability: Circuit structures are transparent and human-readable,

facilitating debugging and analysis.

• Domain Expertise Integration: The grammar can encode common

quantum motifs (e.g., Hadamard layers, entangling gates) to steer evolu-

tion.

• Fitness-Aware Optimisation: Fitness functions can explicitly reward

fidelity, gate count, and circuit depth critical factors on real hardware.

• Implicit Hardware Adaptation: While GE does not explicitly model

device noise or error rates, the evolutionary process naturally selects for

circuits that survive transpilation and execution better. Circuits with fewer

gates, shallower depth, and simpler connectivity patterns inherently experi-

ence less accumulated error, leading to hardware-friendly designs emerging

through selection pressure alone.

Compared to black-box models such as neural networks or variational ap-

proaches Cerezo, Arrasmith, Babbush, Benjamin, Endo, Fujii, McClean, Mitarai,

Yuan, Cincio and Coles (2021), GE offers greater transparency and control, which

is particularly valuable in early-stage quantum programming and experimenta-

tion.

2.3 Compilation and Transpilation in NISQ De-

vices

NISQ devices are characterised by constraints such as qubit connectivity, gate

infidelity, and short coherence times. As such, quantum circuits must be trans-

formed to fit the physical capabilities of the target backend. This is achieved via

9

2. BACKGROUND

compilation and transpilation, typically performed by frameworks such as Qiskit

or t|ket⟩.

2.3.1 Compilation Pipeline

The standard compilation pipeline includes:

• Gate Simplification: Optimising or cancelling adjacent gates where pos-

sible.

• Qubit Mapping: Allocating logical qubits to physical ones, taking into

account connectivity graphs.

• Routing and SWAP Insertion: Adding SWAP gates to enable required

two-qubit interactions.

• Gate Decomposition: Breaking complex operations into native hardware

gate sets.

2.3.2 Transpilation Challenges

Transpilation, while necessary, often introduces significant circuit overhead. For

example, a single two-qubit gate on a disconnected topology may require multiple

SWAPs, increasing the circuit’s depth and error exposure. These issues dispro-

portionately affect algorithms like Grover’s, which are already depth-heavy.

The contrast between canonical and evolved circuits becomes par-

ticularly stark at the transpilation stage. Canonical Grover circuits, with

their generic one-size-fits-all structure, often require extensive transpilation to

map onto physical hardware—adding layers of SWAP gates and decompositions

that dramatically increase circuit depth. In contrast, evolved circuits that are

already lean and specialised for their target state require minimal transpilation

overhead. This difference is not coincidental: while GE does not explicitly model

transpilation costs or noise characteristics, the evolutionary pressure for shorter,

simpler circuits naturally produces designs that map more efficiently to hard-

ware constraints. The result is that evolved circuits achieve better fidelity not

through explicit noise-aware optimisation, but through structural simplicity that

inherently reduces error accumulation.

10

2.4 Related Work on Circuit Synthesis

Grammar-guided synthesis offers a way to mitigate this by producing hardware-

aware circuits upfront, ones that minimise entanglement, depth, and gate variety

even before transpilation.

2.4 Related Work on Circuit Synthesis

Automated quantum circuit synthesis has attracted diverse approaches:

• Genetic Programming: Spector et al. pioneered the use of GP to evolve

quantum circuits including Grover’s algorithm (Spector, 2004). These foun-

dational works established the viability of evolutionary approaches, though

without the structured grammar-based representations that enable larger-

scale synthesis.

• Template Matching: Simplifies circuits using known equivalences (Wille

and Drechsler, 2013). While efficient, its scope is often limited to predefined

transformations.

• Variational Circuits: Learnable parameterised circuits optimised via clas-

sical optimisers (Cerezo, Arrasmith and Babbush, 2021). These are effective

but lack symbolic interpretability and are highly backend-specific.

• Reinforcement Learning: Deep reinforcement learning has been applied

to quantum circuit optimization (Fösel et al., 2021), learning to reduce

circuit depth and gate count through sequential decision-making. These

approaches require extensive training and may struggle with generalisability

to new problem instances.

• Combinatorial Optimization: Heuristic methods have been developed

for qubit mapping and circuit compilation (Zulehner et al., 2019), using

graph algorithms to optimize circuit layout on constrained topologies.

• Quantum-Assisted Algorithms: Hybrid schemes such as Quantum-

Assisted Genetic Algorithms (QAGAs) (King et al., 2019) use quantum

hardware to perform non-local search mutations in evolutionary optimisa-

tion. While not grammar-based, they exemplify the trend toward hybrid

symbolic–quantum methods.

11

2. BACKGROUND

• Differentiable Quantum Programming: Recent frameworks like Pen-

nyLane (Bergholm et al., 2018) and its templates system combine sym-

bolic circuit patterns with gradient-based optimisation. These approaches

validate the importance of symbolic structure in quantum programming,

though they typically require differentiable components that limit struc-

tural exploration.

• Structure Optimization: Recent work combines architecture search with

parameter optimization (Ostaszewski et al., 2021), using evolutionary strate-

gies to discover circuit structures while tuning variational parameters. These

hybrid approaches underscore the value of symbolic methods like GE for

structural discovery.

• Machine Learning for Noise Resilience: Machine learning techniques

have been applied to discover circuits that are inherently robust to device

noise (Cincio et al., 2021), learning structural patterns that perform well

under realistic error conditions.

Each method offers a unique balance between performance, interpretability,

and hardware alignment. GE, by contrast, occupies a unique position as a flexi-

ble, symbolic framework capable of generating hardware-efficient circuits without

large training datasets or deep architectural assumptions. The recent trend to-

ward hybrid symbolic-variational methods further validates the relevance of pure

symbolic approaches like GE, which can discover novel circuit structures that

serve as starting points for further optimisation.

2.5 Summary

This chapter established the theoretical and technical context for the research.

It introduced the Deutsch–Jozsa and Grover algorithms, discussed the benefits of

grammatical evolution for symbolic circuit synthesis, and surveyed key challenges

in transpiling for NISQ hardware. A key insight emerged from contrasting

canonical and evolved approaches: while canonical Grover circuits em-

ploy a one-size-fits-all template that incurs heavy transpilation penal-

ties, evolved circuits achieve superior performance through bespoke,

12

2.5 Summary

state-specific designs that are inherently shallower and more hardware-

friendly. The chapter concluded with a comparative review of current circuit

synthesis strategies, highlighting the unique contributions of GE to the field. The

next chapter details the specific methodological framework used in this study.

13

2. BACKGROUND

14

3

Methodology

This chapter outlines the methodological framework employed to synthesise and

evaluate quantum circuits using Grammatical Evolution (GE). The central work-

flow is a hybrid system that performs symbolic search using evolutionary compu-

tation and validates the top-performing circuits on real quantum hardware. The

methodology is demonstrated using a proof-of-concept with the Deutsch–Jozsa

(DJ) algorithm and applied to optimise Grover circuits across all 3-qubit marked

states.

3.1 Framework Overview

The proposed approach adopts a generative, symbolic strategy for circuit synthe-

sis. Unlike optimisation schemes that begin with fixed templates, GE constructs

quantum programs from scratch via grammar-driven genome decoding (Ryan

et al., 1998). This allows exploration of novel, compact, and hardware-friendly

circuit structures.

A fundamental distinction of our approach is that we evolve a differ-

ent, specialised circuit for each target state, rather than using a single

universal circuit with different oracles. Traditional Grover implementations

use one fixed circuit structure that works for any marked state by simply chang-

ing the oracle component. In contrast, our method generates a bespoke circuit

optimised specifically for each individual target state. While this produces su-

perior performance for each state, it introduces a scalability consideration: for

15

3. METHODOLOGY

an n-qubit system with 2n possible marked states, our approach would require

evolving 2n distinct circuits. For example, a 100-qubit system would theoretically

require evolving 2100 circuits clearly infeasible. However, for NISQ-era applica-

tions where circuit quality is paramount and problem sizes remain modest, the

trade-off of evolving state-specific circuits for dramatically improved fidelity and

reduced depth is worthwhile. We discuss scaling strategies and hybrid approaches

in Chapter 6.

Figure 3.1 summarises the full GE workflow. Integer-encoded genomes are

translated into Qiskit circuits using a Backus–Naur Form (BNF) grammar. Cir-

cuits are first evaluated in simulation. Only the top individuals according to a

custom fitness function are selected for execution on real quantum hardware.

3.2 Deutsch–Jozsa Proof-of-Concept

As a preliminary validation, GE was applied to a simplified instance of the DJ al-

gorithm to evolve reusable circuit scaffolds that distinguish between constant and

balanced Boolean functions (Deutsch and Jozsa, 1992). The goal was to demon-

strate symbolic generalisability across oracle types rather than solve a specific

function.

3.2.1 Grammar for DJ Circuits

The grammar for this task is defined in Appendix 6.4. It supports 2-qubit circuits

and enables:

• Initialisation of qubits (e.g., Hadamard and X gates).

• Insertion of variable oracles as black-box components.

• Terminal measurement and readout logic.

3.2.2 Fitness Function for DJ

Candidate circuits are evaluated on four oracles: two constant and two balanced.

Classification is based on the probability of measuring a ‘0’ on the first qubit:

16

3.2 Deutsch–Jozsa Proof-of-Concept

Figure 3.1: Grammatical Evolution workflow for quantum circuit synthesis. Inte-

ger genomes are decoded into quantum programs via grammar rules and evaluated

through simulation and hardware execution.

17

3. METHODOLOGY

Fitness = num misses+ max error (3.1)

where:

• num misses counts incorrect classifications.

• max error records the worst deviation from expected output probabilities.

For constant functions, correct classification means the output probability

P (0) > 0.5; for balanced functions, P (0) < 0.5. Non-compiling circuits or those

producing no measurements are penalised with infinite fitness.

3.3 Grover Circuit Synthesis

The main experiment applies GE to synthesise Grover circuits for each of the eight

3-qubit marked states. Unlike the DJ task, this setup requires both functional

correctness and hardware efficiency (Grover, 1996).

3.3.1 Grammar Design for Grover Circuits

The Grover grammar is more expressive and supports a wider variety of con-

structs:

• Initialisation Blocks, e.g., Hadamard gates for all input qubits.

• Oracle Templates, allowing different bitwise-controlled logic through flex-

ible gate placement.

• Diffuser Templates, containing the standard Grover diffusion operator

with optional additional gates.

• Comprehensive Gate Set: Single-qubit (x, y, z, h, s, sdg, t, tdg),

two-qubit (cx, cy, cz, swap, iswap), three-qubit (ccx, cswap), and param-

eterised rotations (rx, ry, rz, rxx, ryy, rzz, rzx, u).

18

3.3 Grover Circuit Synthesis

The choice of gates in our grammar represents a balance between

expressivity and hardware compatibility. Theoretically, a universal gate

set such as {H,T,CNOT} would be sufficient to construct any quantum circuit.

However, our grammar includes a richer set for several reasons:

• Hardware Decomposition Efficiency: While IBM’s native gate set con-

sists of {ecr, rz, sx, x}, many of our included gates have efficient decompo-

sitions. For instance, h decomposes into just two native gates, and cx has an

optimised decomposition using ECR. Including these higher-level gates al-

lows evolution to work with familiar quantum primitives while maintaining

reasonable transpilation overhead.

• Algorithmic Patterns: Multi-controlled gates like ccx (Toffoli) and con-

trolled rotations are fundamental building blocks for oracles and quan-

tum algorithms. Including them directly allows evolution to discover and

utilise these patterns without having to rediscover their decompositions

from scratch.

• Exploration Diversity: The variety of gates (Pauli rotations, controlled

operations, swap variants) provides multiple pathways to achieve the same

unitary transformation. This diversity helps avoid local optima in the evo-

lutionary search and enables discovery of unexpected gate combinations

that may be more efficient than canonical constructions.

Fixed-angle rotations ranging from common values (π/4, π/2, π) to arbitrary

angles (0.5, 1.3, 2.7 radians) were included to maintain expressivity while keeping

the search space tractable. The grammar could theoretically work with just

{H,CNOT, T}, but the resulting circuits would likely be significantly deeper and

less hardware-efficient. The current gate set represents domain knowledge about

quantum circuit construction while still allowing evolutionary discovery of novel

combinations.

3.3.2 Fitness Function for Grover Circuits

Circuits are evaluated on their ability to amplify the target state, penalise excess

gates, and remain transpilable:

19

3. METHODOLOGY

Fitness = 10 · miss+ (1− pmarked) + λ · gate count (3.2)

where:

• miss = 1 if pmarked < 0.48; otherwise 0.

• pmarked is the simulated probability of measuring the correct 3-bit solution.

• λ = 0.02 moderates gate count influence.

Invalid circuits or those failing to compile are assigned an infinite penalty to

ensure syntactic and execution correctness.

3.4 Toolchain and Evaluation Stack

Experiments were implemented using a modular Python-based stack:

• Qiskit (Qiskit Development Team, n.d.): For circuit simulation, transpila-

tion, and hardware submission.

• GRAPE (de Lima et al., 2022): A grammar-enabled evolutionary search

framework built on DEAP (Fortin et al., 2012), a Python library for evo-

lutionary algorithms.

• QasmSimulator (Team, n.d.): For high-throughput simulation during

evolution.

• IBM Quantum Backend (ibm brisbane): Used to validate final circuits.

Only elite circuits from each run were submitted to IBM hardware for ex-

ecution; all intermediate fitness evaluations were performed via simulation for

speed.

20

3.4 Toolchain and Evaluation Stack

Summary

This chapter described the methodology for grammar-guided quantum circuit

synthesis using Grammatical Evolution. The framework uses grammars to define

the valid search space for circuits, while fitness functions are designed to guide the

evolutionary search towards solutions that are correct and resource-efficient. We

clarified that our approach evolves distinct circuits for each target state, trading

scalability for performance and discussed the conceptual rationale behind our

grammar design choices. The results of applying this methodology are presented

and discussed in the next chapter.

21

3. METHODOLOGY

22

4

Experimental Setup

This chapter outlines the experimental setup used to evaluate the effectiveness of

Grammatical Evolution (GE) for synthesising quantum circuits. Two pipelines

were employed throughout: (i) a baseline implementation of Grover’s algorithm

using Qiskit’s built-in tools, based on the official IBM Quantum tutorial (IBM

Quantum, 2023), and (ii) evolved circuits generated via symbolic search with GE.

For completeness, the configuration for the 1-bit Deutsch–Jozsa (DJ) proof-of-

concept is also described.

4.1 Grover Circuit Configuration

The main experiment focused on a 3-qubit instance of Grover’s algorithm. This

configuration enabled systematic evaluation across all eight computational basis

states (000 to 111) as target (marked) states.

A crucial distinction in our experimental approach is that evolved

and canonical circuits are fundamentally different in nature and there-

fore evaluated differently. Standard Grover circuits use the same universal

structure for all marked states, changing only the oracle component. In con-

trast, our evolved circuits are bespoke solutions optimised specifically for each

individual target state. This means that while a canonical Grover circuit could

theoretically search for any of the eight states by swapping oracles, each evolved

circuit is specialised to amplify only its designated target state. This specialisa-

tion is what enables the dramatic performance improvements we observe, as the

23

4. EXPERIMENTAL SETUP

evolutionary process can eliminate unnecessary general-purpose logic and produce

leaner, more efficient circuits.

4.1.1 Baseline: Canonical Grover via Qiskit

Baseline circuits were constructed using Qiskit’s GroverOperator class, following

IBM’s official Grover tutorial (IBM Quantum, 2023). For each marked state,

a custom oracle was constructed using the MCMT (multi-controlled multi-target)

gate combined with a ZGate to flip the phase of the desired basis state(s). This

conforms to the standard quantum oracle construction for Grover’s algorithm.

The Grover operator was applied with k =
⌊
π
4

√
2n
⌋

= 1 iteration. This

formula estimates the optimal number of Grover iterations required to maximise

the probability of measuring the marked state. For n = 3, the value rounds to

one full iteration, which is sufficient to amplify the solution state without over-

rotation.

Each complete Grover circuit consisted of Hadamard initialisation, oracle con-

struction, Grover amplification, and final measurement. The circuits were tran-

spiled using Qiskit’s generate preset pass manager at optimisation level 3 for

the ibm brisbane backend (Javadi-Abhari et al., 2024). Metrics such as depth,

total gate count, gate-type breakdown, and final fidelity (from simulation and

hardware) were recorded for analysis.

4.1.2 Evolved: Symbolically Generated Circuits

For each marked state, a circuit was synthesised using the GE pipeline described

in Chapter 3. These circuits were assembled from scratch using a hand-crafted

grammar and evaluated based on fidelity to the target state, circuit simplicity,

and robustness.

The fitness evaluation for evolved circuits differs fundamentally

from how one would assess a standard Grover circuit. While canoni-

cal Grover circuits are designed to be general-purpose and are typically evalu-

ated on their ability to maintain the theoretical structure of the algorithm, our

evolved circuits are scored purely on practical performance metrics: how reliably

they amplify their specific target state (fidelity) and how efficiently they do so

(gate count). The evolutionary fitness function (Equation 3.2) does not reward

24

4.2 Hardware Configuration

adherence to Grover’s theoretical framework but instead optimises directly for

hardware execution success. This performance-oriented scoring allows evolution

to discover unconventional circuit structures that may not resemble traditional

Grover circuits but achieve superior results on real quantum hardware.

During evolution, circuits were executed using Qiskit Aer’s QasmSimulator (Team,

n.d.) for rapid evaluation. For final Hall-of-Fame (HOF) candidates, circuits were

transpiled and run on hardware using the same settings as the baseline for fair

comparison.

4.2 Hardware Configuration

All evolved and baseline circuits were executed on ibm brisbane, a 127-qubit

superconducting quantum processor with a heavy-hex coupling topology. Tran-

spilation was performed using Qiskit’s generate preset pass manager at opti-

misation level 3, targeting the backend’s native gate set.

While backend-specific calibrations (e.g., error rates, coherence times) were

not explicitly retrieved or incorporated, the transpiler implicitly accounted for

current device constraints through routing, qubit selection, and gate decomposi-

tion. No additional noise modelling or calibration bias was introduced into the

evolutionary fitness function. As such, the final hardware results reflect practical

execution performance under standard operating conditions.

4.3 Simulation Environment

During the evolutionary search, candidate circuits were evaluated using Qiskit

Aer’s QasmSimulator (Team, n.d.). Each evaluation was performed using 10,000

shots, matching the hardware execution configuration to ensure consistent prob-

abilistic behaviour.

Simulation was used exclusively during training. Transpilation was omitted

for speed; circuits were executed directly from decoded phenotypes. Final indi-

viduals selected for hardware validation were then transpiled and submitted to

ibm brisbane for comparison.

25

4. EXPERIMENTAL SETUP

4.4 Evaluation Metrics

Evolved Circuits

Detailed metrics were recorded for every individual across all generations. The

following data was extracted post-simulation (and, optionally, post-transpilation

for HOF candidates):

• Target State: The 3-qubit bitstring the circuit was designed to amplify.

• Fidelity (pmarked): Empirical probability of measuring the marked state.

• Error Metric: Defined as 1− pmarked, used in the fitness function.

• Gate Count: Total number of gates in the circuit (pre-transpilation).

• Circuit Depth: Number of sequential gate layers (pre-transpilation).

• Oracle Code: The exact oracle injected into the circuit.

• Modified Circuit Code: Full decoded phenotype string including oracle

injection.

• Measurement Counts: Full output distribution from 10,000-shot execu-

tion.

For top-performing circuits, additional transpiled metrics were collected:

• Transpiled Gate Breakdown: Counts of native gates such as rz, sx, x,

ecr, and measure.

• Transpiled Depth: Circuit depth after optimisation for ibm brisbane.

• Total Transpiled Ops: Sum of all gates post-transpilation.

• Qubit/Clbit Allocation: As reported by the transpiler.

• Hardware Fidelity: Measured pmarked from QPU runs.

26

4.5 Deutsch–Jozsa Experiment (Simulator Only)

Baseline Circuits

A comparable set of metrics was collected for the baseline Qiskit Grover circuits:

• Target State and Oracle Definition: As described above.

• Circuit Code: Full Grover circuit including oracle and amplification.

• Fidelity (pmarked) and Error: From both simulator and QPU.

• Gate Count and Depth: Post-transpilation values.

• Measurement Counts: Full 10,000-shot histogram.

All metrics were stored programmatically during the GE run or Qiskit base-

line evaluation. This enabled downstream statistical analysis and quantitative

comparisons across approaches.

4.5 Deutsch–Jozsa Experiment (Simulator Only)

To validate that the symbolic GE pipeline can produce correct quantum behaviour

beyond Grover’s algorithm, a proof-of-concept experiment was conducted for the

1-bit Deutsch–Jozsa (DJ) problem. This was implemented using a dedicated BNF

grammar and executed entirely on Qiskit Aer.

The evolved scaffolds were designed to contain an explicit oracle placeholder

surrounded by barriers. During evaluation, each candidate scaffold had one of

four predefined oracle functions injected:

• constant0: f(x) = 0, no ancilla flip.

• constant1: f(x) = 1, always flip ancilla.

• balanced0to1: f(x) = x, flip if input is 1.

• balanced1to0: f(x) = ¬x, flip if input is 0.

Each scaffold–oracle combination was transpiled and simulated with 512 shots.

Classification was based on the measurement distribution of the input qubit: a

constant function was expected to produce outcome 0 with high probability,

27

4. EXPERIMENTAL SETUP

while a balanced function was expected to yield a uniform distribution. Circuits

were penalised in fitness based on incorrect classification or high worst-case error.

This experiment was not intended to optimise circuit efficiency but to establish

the feasibility of evolving functionally correct quantum scaffolds under oracle

injection using symbolic methods.

Summary

This chapter detailed the experimental framework used to evaluate both canon-

ical and evolved quantum circuits. We emphasised the fundamental difference

in how these circuits are conceived and evaluated: canonical Grover circuits

are general-purpose templates scored on algorithmic correctness, while evolved

circuits are specialised solutions scored on practical performance metrics. Stan-

dardised simulation parameters, execution backends, and evaluation metrics were

applied throughout to ensure a fair and reproducible comparison. While canonical

Grover circuits were transpiled and executed on real hardware, evolved circuits

were initially evaluated in simulation, and only the final candidates were deployed

to the QPU. A preliminary experiment on the 1-bit Deutsch–Jozsa problem was

also conducted in simulation to assess the symbolic pipeline’s capacity for ba-

sic functional correctness. The results of these experiments are presented and

analysed in the next chapter.

28

5

Results and Analysis

This chapter presents and critically analyses the results of executing both canon-

ical and evolved quantum circuits for Grover’s algorithm. We compare perfor-

mance across key metrics circuit depth, gate count, and fidelity on real super-

conducting quantum hardware. A secondary simulation-only experiment on the

Deutsch–Jozsa (DJ) algorithm is also examined to demonstrate the symbolic gen-

erality of the Grammatical Evolution (GE) pipeline.

5.1 Grover: Baseline vs Evolved Performance

Table 5.1 compares the performance of evolved and canonical Grover circuits

across all eight 3-qubit marked states. The evolved circuits consistently outper-

form their canonical counterparts in hardware-executed fidelity, depth, and gate

count.

Analysis. Across all eight target states, evolved circuits consistently yielded

higher fidelity measurements when executed on the ibm brisbane backend. Fi-

delity improvements ranged from 20–40 percentage points, indicating that the

evolved circuits were more resilient to real-device noise.

The significance of these fidelity scores cannot be overstated. Fidelity

measures the probability of obtaining the correct answer from a quantum circuit

it is the ultimate metric of practical success. On NISQ devices, achieving fidelities

above 90% for multi-qubit algorithms is exceptional, particularly without error

mitigation techniques. For context, canonical Grover circuits achieved fidelities

29

5. RESULTS AND ANALYSIS

Table 5.1: Hardware fidelity and resource comparison across all 3-qubit basis

states. Evolved circuits consistently outperform standard Grover implementations

in fidelity, depth, and gate efficiency.

Target Circuit Fidelity Depth Gate Depth Gate

State Type Count Reduction Reduction

|000⟩ Evolved 94.8% 11 21 93.8% 92.6%

Grover 63.3% 177 283

|001⟩ Evolved 91.0% 12 26 93.4% 91.0%

Grover 66.0% 181 288

|010⟩ Evolved 96.1% 10 18 94.3% 93.5%

Grover 61.8% 175 277

|011⟩ Evolved 95.8% 12 20 93.5% 93.1%

Grover 63.8% 185 290

|100⟩ Evolved 97.7% 12 22 93.4% 92.4%

Grover 68.5% 183 289

|101⟩ Evolved 90.0% 18 34 90.0% 88.1%

Grover 67.3% 180 286

|110⟩ Evolved 88.4% 21 39 88.5% 86.3%

Grover 57.7% 182 285

|111⟩ Evolved 95.5% 11 20 93.8% 92.9%

Grover 62.9% 178 282

30

5.2 Gate Decomposition of Evolved Circuits

between 57.7% and 68.5%, barely better than random guessing for some states.

In contrast, our evolved circuits achieved fidelities between 88.4% and 97.7%,

approaching the theoretical ideal of 100% despite executing on noisy hardware.

This difference transforms Grover’s algorithm from a theoretical curiosity to a

practically viable computation on current quantum hardware.

In addition to fidelity gains, evolved circuits achieved dramatic reductions in

both depth and gate count by over 90% in several cases. This suggests that

grammar-guided evolution effectively discovers structurally compact solutions

that map efficiently to hardware.

The slightly lower performance for state |110⟩ (88.4% fidelity) war-

rants investigation. This state requires the most complex evolved circuit

(depth 21, 39 gates) among all targets. The pattern 110 may be inherently

more challenging to amplify efficiently due to its specific bit structure requiring

coordinated operations across all three qubits with two in the |1⟩ state and one

in |0⟩. Additionally, the evolutionary process may have encountered local optima

for this particular state, resulting in a less optimal solution. The increased circuit

depth (21 vs. 10–12 for most other states) suggests the evolution struggled to find

a compact representation, leading to more opportunities for error accumulation.

Notably, even this ”worst” evolved circuit still achieves 30.7 percentage points

higher fidelity than its canonical counterpart.

5.2 Gate Decomposition of Evolved Circuits

Table 5.2 provides the detailed gate breakdown of post-transpilation evolved cir-

cuits.

Analysis. A recurring pattern is the minimisation of multi-qubit entangling

gates particularly ECR gates which are known to be more error-prone on NISQ

hardware. The evolved solutions exhibit a heavy bias toward native single-qubit

gates (rz, sx), which are generally more stable and require less transpilation

overhead. This pattern reinforces the conclusion that the evolutionary process

is successfully aligning circuit synthesis with hardware realities. The correlation

between ECR gate count and fidelity is evident: states requiring more ECR gates

(101, 110) show lower fidelities, confirming that minimising two-qubit operations

is crucial for NISQ success.

31

5. RESULTS AND ANALYSIS

Table 5.2: Post-transpilation gate metrics for evolved circuits targeting each 3-

qubit marked state.

State Depth Total Gates ECR RZ SX X

000 11 21 2 10 4 2

001 12 26 2 12 8 1

010 10 18 2 9 4 0

011 12 20 2 8 4 3

100 12 22 2 10 4 3

101 18 34 4 16 10 1

110 21 39 5 19 11 1

111 11 20 2 10 4 1

5.3 Circuit Visualisation Examples

Figures 5.1–5.3 illustrate three evolved circuits after final transpilation. These

highlight the structural compactness achieved by the GE workflow.

Figure 5.1: Transpiled circuit for evolved |000⟩ targeting ibm brisbane. This

highly optimised circuit achieves 94.8% fidelity using only 21 gates with depth 11,

compared to the canonical Grover’s 283 gates with depth 177.

Analysis. Visual inspection of these circuits shows tight gate groupings, short

depths, and minimal ancilla usage. Importantly, these features were not manually

engineered but emerged from the symbolic evolution process. The circuits show

clear structural differences from canonical Grover implementations they lack the

characteristic repeated Grover operator structure, instead employing direct, state-

specific amplitude manipulation. This supports the pipeline’s ability to automate

32

5.4 Deutsch–Jozsa Simulation Results

Figure 5.2: Transpiled circuit for evolved |010⟩ targeting ibm brisbane. The

most efficient evolved circuit with only 18 gates and depth 10, achieving the second-

highest fidelity of 96.1%.

Figure 5.3: Transpiled circuit for evolved |111⟩ targeting ibm brisbane. Despite

targeting the all-ones state, this circuit maintains exceptional efficiency with 20

gates and depth 11, achieving 95.5% fidelity.

low-level circuit design effectively and discover novel quantum algorithms that

diverge from human-designed patterns.

5.4 Deutsch–Jozsa Simulation Results

As an auxiliary experiment, a 2-qubit Deutsch–Jozsa task was used to test the

generality of the GE framework. All four oracles (constant0, constant1, bal-

anced0to1, balanced1to0) were correctly classified by evolved scaffold circuits, as

shown in the convergence plot in Figure 5.4.

Analysis. The evolutionary search rapidly reduced both classification error

and the number of invalid programs. While this task was evaluated only in sim-

ulation, it demonstrates that the grammar and fitness function were sufficiently

expressive to evolve generalisable quantum logic. Circuit visualisations and out-

put histograms for all oracles are included in Appendix 6.4.

33

5. RESULTS AND ANALYSIS

Figure 5.4: Convergence of best fitness and invalid individuals across generations

(DJ task).

Summary

This chapter presented both quantitative and qualitative analyses of evolved

quantum circuits for Grover’s algorithm and a symbolic proof-of-concept for the

DJ task. Key findings include:

• Up to 94% depth reduction and 93% gate reduction versus canonical

Grover circuits.

• Evolved circuits reached up to 97.7% fidelity, consistently outperforming

the Qiskit baselines by 20–40 percentage points.

• Fidelity scores approaching theoretical limits demonstrate that evolved

circuits make Grover’s algorithm practically viable on NISQ hardware.

• DJ simulation confirmed the pipeline’s symbolic generality and correctness

across multiple oracle types.

Overall, the results support the hypothesis that grammatical evolution enables

the synthesis of compact, high-fidelity quantum circuits suitable for execution

on real NISQ hardware. The exceptional fidelity scores transforming barely-

functional canonical circuits into highly reliable quantum computations represent

a significant advance in practical quantum algorithm implementation.

34

6

Conclusions and Future

Directions

6.1 Summary

This dissertation investigated the use of Grammatical Evolution (GE) for syn-

thesizing hardware-efficient quantum circuits, with Grover’s algorithm serving as

the primary benchmark. The results demonstrate that GE when guided by a

fidelity-aware, resource-sensitive fitness function can produce circuits that not

only function correctly but also dramatically outperform canonical implementa-

tions in key performance metrics.

Two major experimental tracks were pursued. First, a proof-of-concept Deutsch–Jozsa

(DJ) implementation validated GE’s capacity to evolve reusable circuit scaf-

folds capable of distinguishing between balanced and constant functions. Sec-

ond, a targeted synthesis of Grover circuits was conducted across all eight 3-

qubit basis states. These evolved circuits were transpiled and deployed to IBM’s

ibm brisbane backend, where they achieved remarkable improvements over stan-

dard implementations:

• Fidelity improvements of 20–40 percentage points, with evolved cir-

cuits reaching 88.4–97.7% compared to canonical circuits’ 57.7–68.5%

• Circuit depth reductions of 88–94%, from 175–185 gates down to 10–21

gates

35

6. CONCLUSIONS AND FUTURE DIRECTIONS

• Gate count reductions of 86–93%, from 277–290 gates down to 18–39

gates

These improvements stem from a fundamental design choice: we

evolved a distinct, specialised circuit for each target state rather than

using a universal circuit with different oracles. This one-circuit-per-state

approach was deliberately chosen to prioritise performance over generality. By al-

lowing evolution to craft bespoke solutions tailored to each specific marked state,

we eliminated the overhead of general-purpose logic that makes canonical Grover

circuits deep and error-prone. While this limits scalability requiring 2n evolved

circuits for an n-qubit system it enables the dramatic performance gains that

transform Grover’s algorithm from a theoretical demonstration into a practical

tool on NISQ hardware.

6.2 Conclusions

This work provides more than empirical validation it proposes a shift in how

quantum circuits can be designed under practical constraints imposed by NISQ-

era hardware.

Traditionally, quantum algorithms have been developed analytically, using

hand-crafted circuit templates derived from mathematical insights. While ele-

gant, these designs often assume idealized execution conditions and struggle when

deployed on real hardware. The canonical Grover circuit, for instance, maintains

the same structure regardless of the target state, resulting in unnecessary depth

and complexity that amplifies errors on noisy devices.

In contrast, Grammatical Evolution (GE) treats circuit synthesis as a sym-

bolic search problem, capable of discovering compact, hardware-adaptive solu-

tions from first principles. Our state-specific approach represents a philo-

sophical shift: rather than adapting one algorithm to search for many

states, we evolve many algorithms, each optimised for searching for

one state. This trade-off scalability for performance is appropriate for NISQ-

era applications where circuit quality determines whether quantum advantage is

achievable at all.

The results in this dissertation show that GE can consistently produce circuits

36

6.3 Contributions

that are not only operationally correct but also outperform canonical designs by

factors of 10× in depth and 1.5× in fidelity without requiring deep architec-

tural priors.

Key conclusions:

• Grammatical Evolution enables bottom-up discovery of efficient quantum

circuits directly tailored to specific computational targets and hardware

constraints.

• The one-circuit-per-state approach, while limiting scalability, enables dis-

covery of ultra-efficient quantum circuits that would be impossible to derive

analytically.

• State-specific optimisation naturally aligns with NISQ priorities: when ev-

ery gate matters, bespoke solutions outperform general-purpose templates.

• Symbolic grammars offer interpretable, extensible scaffolds for encoding

the space of possible quantum programs an asset when generalizing across

algorithms.

• Automated symbolic methods like GE show that superior performance can

emerge from search-driven discovery rather than human design.

6.3 Contributions

This work introduces several novel contributions to the field of quantum circuit

synthesis:

• A complete GE-based pipeline for quantum circuit generation, integrating

symbolic search, Qiskit simulation, and real-device validation.

• The pioneering application of Grammatical Evolution to quantum algorithm

design the first work to successfully apply GE to evolve quantum circuits,

validated through both simulation and execution on real IBM quantum

hardware.

37

6. CONCLUSIONS AND FUTURE DIRECTIONS

• A demonstration that state-specific circuit evolution can achieve near-ideal

fidelities (up to 97.7%) on NISQ hardware where canonical circuits barely

exceed random guessing.

• A custom grammar and multi-objective fitness formulation that jointly op-

timize fidelity and resource cost.

• Empirical evidence that evolved circuits can achieve 10× depth reduction

and 1.5× fidelity improvement relative to textbook Grover circuits.

• A generalizable DJ scaffold that allows oracle plug-in, demonstrating GE’s

potential for composable algorithm synthesis.

• A case study showing symbolic methods can offer interpretable and hardware-

conscious alternatives to traditional analytical design.

6.4 Future Work

Future directions can be organized under several key themes:

Addressing Scalability Limitations

• Develop hybrid approaches that evolve circuit templates for classes of states

rather than individual states, balancing generality with performance.

• Investigate transfer learning between evolved circuits to reduce the compu-

tational cost of evolving circuits for new target states.

• Explore hierarchical grammars that can capture patterns across multiple

target states while maintaining specialisation benefits.

Scalability and Generalization

• Apply GE to 4–5 qubit problems and extend the pipeline to more complex

algorithms such as Bernstein–Vazirani, Quantum Fourier Transform (QFT),

or Hamiltonian simulation.

38

6.4 Future Work

• Benchmark across a wider range of quantum tasks to test generalizability

and grammar flexibility.

Hardware-Awareness and Real-Time Feedback

• Integrate hardware-specific transpilation feedback and backend noise pro-

files directly into the evolutionary loop.

• Explore real-time QPU evaluation during evolution via batch sampling or

dynamic circuit execution.

Multi-Objective Optimization

• Use Pareto-based strategies (e.g., NSGA-II) to balance trade-offs across

depth, fidelity, runtime, and entanglement.

Grammar Engineering

• Investigate how grammar abstraction levels, expressiveness, and syntactic

structure affect solution diversity, convergence, and interpretability.

Comparative and Cross-Disciplinary Extensions

• Benchmark GE against reinforcement learning, genetic programming, and

differentiable compilers for quantum circuit generation.

• Extend GE to quantum machine learning tasks e.g., variational quantum

classifiers or quantum kernels where circuit structure can benefit from sym-

bolic adaptability.

Taken together, these findings advocate for a rethinking of quantum algorithm

development. Symbolic evolutionary methods like GE challenge the prevailing as-

sumption that quantum software must follow analytically derived forms. Instead,

they embrace the idea that optimal algorithms especially for today’s noisy devices

may emerge through automated exploration, not manual design.

39

6. CONCLUSIONS AND FUTURE DIRECTIONS

As quantum processors continue to evolve, so too must our programming

paradigms. Grammatical Evolution represents not just a tool for circuit opti-

mization, but a scalable, interpretable, and hardware-conscious framework for

quantum-classical co-design. The success of our state-specific approach

achieving near-ideal performance where general-purpose circuits fail

suggests that the future of NISQ-era quantum computing may lie not

in universal algorithms, but in bespoke solutions tailored to specific

problems and hardware.

40

References

Bergholm, V., Izaac, J., Schuld, M., Gogolin, C., Ahmed, S., Ajith, V., Alam, M. S.,

Alonso-Linaje, G., AkashNarayanan, B., Asadi, A. et al. (2018), ‘Pennylane: Au-

tomatic differentiation of hybrid quantum-classical computations’, arXiv preprint

arXiv:1811.04968 .

URL: https://arxiv.org/abs/1811.04968 12

Cerezo, M., Arrasmith, A., Babbush, R., Benjamin, S. C., Endo, S., Fujii, K., McClean,

J. R., Mitarai, K., Yuan, X., Cincio, L. and Coles, P. J. (2021), ‘Variational quantum

algorithms’, Nature Reviews Physics 3, 625–644. 9

Cerezo, M., Arrasmith, A. and Babbush, R. e. a. (2021), ‘Variational quantum algo-

rithms’, Nature Reviews Physics 3, 625–644. 11

Cincio, L., Rudinger, K., Sarovar, M. and Coles, P. J. (2021), ‘Machine learning of

noise-resilient quantum circuits’, PRX Quantum 2(1), 010324. 12

de Lima, A., Carvalho, S., Dias, D. M., Naredo, E., Sullivan, J. P. and Ryan, C. (2022),

‘Grape: Grammatical algorithms in python for evolution’, Signals 3(3), 642–663.

URL: https://www.mdpi.com/2624-6120/3/3/39 20

Deutsch, D. and Jozsa, R. (1992), ‘Rapid solution of problems by quantum computa-

tion’, Proceedings of the Royal Society of London. Series A 439(1907), 553–558. 1,

5, 16

Fortin, F.-A., De Rainville, F.-M., Gardner, M.-A., Parizeau, M. and Gagné, C. (2012),

‘Deap: Evolutionary algorithms made easy’, Journal of Machine Learning Research

13(Jul), 2171–2175.

URL: https://jmlr.org/papers/volume13/fortin12a/fortin12a.pdf 20

Fösel, T., Niu, M. Y., Marquardt, F. and Li, L. (2021), ‘Quantum circuit optimization

with deep reinforcement learning’, arXiv preprint arXiv:2103.07585 . 11

41

REFERENCES

Grover, L. K. (1996), A fast quantum mechanical algorithm for database search, in ‘Pro-

ceedings of the 28th Annual ACM Symposium on Theory of Computing’, pp. 212–

219. 1, 6, 18

IBM Quantum (2023), ‘Grover’s Algorithm – Qiskit Textbook Tutorial’, https://

quantum.cloud.ibm.com/docs/en/tutorials/grovers-algorithm. Accessed July

2025. 2, 3, 23, 24

Javadi-Abhari, A., Treinish, M., Krsulich, K., Wood, C. J., Lishman, J., Gacon, J.,

Martiel, S., Nation, P. D., Bishop, L. S., Cross, A. W., Johnson, B. R. and Gambetta,

J. M. (2024), ‘Quantum computing with qiskit’, arXiv e-prints . 24

King, J., Mohseni, M., Bernoudy, W., Fréchette, A., Sadeghi, H., Isakov, S. V., Neven,

H. and Amin, M. H. (2019), ‘Quantum-assisted genetic algorithm’, arXiv preprint

arXiv:1907.00707 .

URL: https://arxiv.org/abs/1907.00707 11

Ostaszewski, M., Grant, E. and Benedetti, M. (2021), ‘Structure optimization for pa-

rameterized quantum circuits’, Quantum 5, 391. 12

Preskill, J. (2018), ‘Quantum computing in the nisq era and beyond’, Quantum 2, 79.

1

Qiskit Development Team (n.d.), ‘Qiskit: An open-source framework for quantum com-

puting’, https://www.ibm.com/quantum/qiskit. Accessed July 2025. 20

Ryan, C., Collins, J. and O’Neill, M. (1998), ‘Grammatical evolution: Evolving pro-

grams for an arbitrary language’, Proceedings of the First European Workshop on

Genetic Programming pp. 83–96. 7, 15

Spector, L. (2004), Automatic Quantum Computer Programming: A Genetic Program-

ming Approach, Vol. 7 of Genetic Programming, Springer US, Boston, MA. 11

Team, Q. D. (n.d.), ‘Qiskit Aer: High performance simulators for quantum circuits’.

20, 25

Wille, R. and Drechsler, R. (2013), Quantum circuit optimization using templates, in

‘Design, Automation & Test in Europe Conference & Exhibition (DATE)’. 11

Zulehner, A., Paler, A. and Wille, R. (2019), ‘Combinatorial approaches for quantum

circuit mapping’, IEEE Transactions on Computer-Aided Design of Integrated Cir-

cuits and Systems 38(7), 1226–1238. 11

42

https://quantum.cloud.ibm.com/docs/en/tutorials/grovers-algorithm
https://quantum.cloud.ibm.com/docs/en/tutorials/grovers-algorithm
https://www.ibm.com/quantum/qiskit

Appendix A

BNF Grammar Definitions

This appendix contains the Backus-Naur Form (BNF) grammars used in both

the Deutsch-Jozsa (DJ) and Grover experiments.

Deutsch-Jozsa Grammar (xor.bnf)

<Program> ::=

<Initialize>

<InitialSetupSequence>

<OptionalBarrier>

<OraclePlaceholder>

<OptionalBarrier>

<FinalSetupSequence>

<Measure>

<Initialize> ::=

"qc = QuantumCircuit(2, 1)\n"

<InitialSetupSequence> ::= <InitialSetupStep1> <InitialSetupStep2> <InitialSetupStep3>

<InitialSetupStep1> ::= "qc.x(1)\n" | <SingleQubitGateOnAncilla>

<InitialSetupStep2> ::= "qc.h(1)\n" | <SingleQubitGateOnAncilla>

<InitialSetupStep3> ::= "qc.h(0)\n" | <SingleQubitGateOnInput>

<FinalSetupSequence> ::= <FinalSetupStep>

<FinalSetupStep> ::= "qc.h(0)\n" | <SingleQubitGateOnInput>

43

Appendix A

<Measure> ::=

"qc.measure(0, 0)\n"

<OraclePlaceholder> ::=

"# ORACLE_INSERTION_POINT\n"

<OptionalBarrier> ::=

""

| "qc.barrier()\n"

<SingleQubitGateOnInput> ::=

"qc.x(0)\n"

| "qc.h(0)\n"

| "qc.s(0)\n"

| "qc.sxdg(0)\n"

| "qc.t(0)\n"

| "qc.tdg(0)\n"

| "qc.rx(pi/2, 0)\n"

| "qc.ry(pi/4, 0)\n"

| "qc.p(pi/4, 0)\n"

| "qc.u1(pi/3, 0)\n"

<SingleQubitGateOnAncilla> ::=

"qc.x(1)\n"

| "qc.h(1)\n"

| "qc.s(1)\n"

| "qc.sxdg(1)\n"

| "qc.t(1)\n"

| "qc.tdg(1)\n"

| "qc.rx(pi/2, 1)\n"

| "qc.ry(pi/4, 1)\n"

| "qc.p(pi/4, 1)\n"

| "qc.u1(pi/3, 1)\n"

44

Appendix A

Grover Grammar (grover.bnf)

<Program> ::= <Initialize> <HadamardAll> <GroverIterations> <Measure>

<Initialize> ::= "qc = QuantumCircuit(3, 3)\n"

<HadamardAll> ::=

"qc.h(0)\n"

"qc.h(1)\n"

"qc.h(2)\n"

<GroverIterations> ::= <GroverIteration>

| <GroverIteration> <GroverIterations>

<GroverIteration> ::= <OracleBlock> | <DiffuserBlock>

<OracleBlock> ::= "## Begin Oracle\n"

<OptionalOracleVariations>

"## End Oracle\n"

<OptionalOracleVariations> ::= <SmallGateList>

<SmallGateList> ::= <SmallGate>

| <SmallGate> <SmallGateList>

<SmallGate> ::= <SingleQubitGate>

| <TwoQubitGate>

| <ThreeQubitGate>

| <ParameterizedGate>

<DiffuserBlock> ::= "## Begin Diffuser\n"

<StandardDiffuser>

45

Appendix A

<OptionalGates>

"## End Diffuser\n"

<StandardDiffuser> ::=

"qc.h(0)\n"

"qc.h(1)\n"

"qc.h(2)\n"

"qc.x(0)\n"

"qc.x(1)\n"

"qc.x(2)\n"

"qc.h(2)\n"

"qc.cx(0,2)\n"

"qc.cx(1,2)\n"

"qc.h(2)\n"

"qc.x(0)\n"

"qc.x(1)\n"

"qc.x(2)\n"

"qc.h(0)\n"

"qc.h(1)\n"

"qc.h(2)\n"

<OptionalGates> ::= <GateList>

<GateList> ::= <Gate>

| <Gate> <GateList>

<Gate> ::= <SingleQubitGate>

| <TwoQubitGate>

| <ThreeQubitGate>

| <ParameterizedGate>

<SingleQubitGate> ::=

"qc.x(" <QubitSingle> ")\n"

| "qc.y(" <QubitSingle> ")\n"

46

Appendix A

| "qc.z(" <QubitSingle> ")\n"

| "qc.h(" <QubitSingle> ")\n"

| "qc.s(" <QubitSingle> ")\n"

| "qc.sdg(" <QubitSingle> ")\n"

| "qc.t(" <QubitSingle> ")\n"

| "qc.tdg(" <QubitSingle> ")\n"

| "qc.id(" <QubitSingle> ")\n"

<TwoQubitGate> ::=

"qc.cx(" <TwoDistinctQubits> ")\n"

| "qc.cy(" <TwoDistinctQubits> ")\n"

| "qc.cz(" <TwoDistinctQubits> ")\n"

| "qc.swap(" <TwoDistinctQubits> ")\n"

| "qc.iswap(" <TwoDistinctQubits> ")\n"

<ThreeQubitGate> ::=

"qc.ccx(" <ThreeDistinctQubits> ")\n"

| "qc.cswap(" <ThreeDistinctQubits> ")\n"

<ParameterizedGate> ::=

"qc.rx(" <Angle> "," <QubitSingle> ")\n"

| "qc.ry(" <Angle> "," <QubitSingle> ")\n"

| "qc.rz(" <Angle> "," <QubitSingle> ")\n"

| "qc.u(" <Angle> "," <Angle> "," <Angle> "," <QubitSingle> ")\n"

| "qc.rxx(" <Angle> "," <TwoDistinctQubits> ")\n"

| "qc.ryy(" <Angle> "," <TwoDistinctQubits> ")\n"

| "qc.rzz(" <Angle> "," <TwoDistinctQubits> ")\n"

| "qc.rzx(" <Angle> "," <TwoDistinctQubits> ")\n"

<QubitSingle> ::= "0" | "1" | "2"

<TwoDistinctQubits> ::=

"0,1" | "1,0"

| "0,2" | "2,0"

47

Appendix A

| "1,2" | "2,1"

<ThreeDistinctQubits> ::=

"0,1,2" | "0,2,1"

| "1,0,2" | "1,2,0"

| "2,0,1" | "2,1,0"

<Angle> ::=

"0"

| "np.pi/4"

| "np.pi/2"

| "np.pi"

| "3*np.pi/2"

| "2*np.pi"

| "0.5"

| "1.3"

| "2.7"

| "0.314"

| "1.5708"

| "3.1415"

<Measure> ::=

"qc.measure(0, 0)\n"

"qc.measure(1, 1)\n"

"qc.measure(2, 2)\n"

48

Appendix B

Deutsch-Jozsa Experimental Results

This appendix includes the DJ circuit snapshots and histograms for each oracle

evaluation.

Figure 1: Evolved DJ Circuit with constant0 oracle

49

Appendix B

Figure 2: Histogram result for constant0

Figure 3: Evolved DJ Circuit with balanced0to1 oracle

Figure 4: Histogram result for balanced0to1

50

Appendix C

Code Snippets and Fitness Function

Grover Fitness Function

1 def fitness_function_specialized_state_000(

2 phenotype_str ,

3 shots=NUM_SHOTS ,

4 threshold=SUCCESS_THRESHOLD ,

5 gate_penalty_weight=GATE_PENALTY_WEIGHT ,

6 target_state=TARGET_STATE ,

7 log_states=True

8):

9 if not isinstance(phenotype_str , str):

10 return (float(’inf’), []) if log_states else float(’inf’)

11

12 evaluator = CircuitEvaluator(shots=shots)

13 logs = []

14

15 oracle_code = generate_oracle_for_state(target_state)

16 modified_code = inject_oracle(phenotype_str , oracle_code)

17 qc = evaluator.execute_circuit(modified_code)

18 if qc is None:

19 return (float(’inf’), []) if log_states else float(’inf’)

20

21 result = evaluator.simulate_circuit(qc , target_state)

22 p_marked = result["p_marked"]

23 error = 1 - p_marked

24 miss = 1 if error > threshold else 0

25 gate_count = result.get("gate_count", 0)

26

51

Appendix C

27 fitness_score = 10 * miss + error + gate_penalty_weight *

gate_count

28

29 if log_states:

30 logs.append ({

31 "state": target_state ,

32 "p_marked": p_marked ,

33 "error": error ,

34 "gate_count": gate_count ,

35 "oracle": oracle_code ,

36 "code": modified_code ,

37 "counts": result["counts"],

38 "depth": result.get("depth", None)

39 })

40 return (fitness_score , logs)

41 else:

42 return fitness_score

Listing 1: Grover Fitness Function with Oracle Injection

Example Grover Circuit

Note: The following evolved circuit includes a valid oracle, although its visual

marker (e.g., ## Begin Oracle) is not shown. This is due to formatting in

the phenotype string, not a logical error. The oracle was correctly injected and

verified through logs and fidelity scores.

1 # Initial Hadamard gates

2 qc.h(0)

3 qc.h(1)

4 qc.h(2)

5

6 # Begin Diffuser

7 qc.h(0)

8 qc.h(1)

9 qc.h(2)

10 qc.x(0)

11 qc.x(1)

12 qc.x(2)

13 qc.h(2)

52

Appendix C

14 qc.cx(0, 2)

15 qc.cx(1, 2)

16 qc.h(2)

17 qc.x(0)

18 qc.x(1)

19 qc.x(2)

20 qc.h(0)

21 qc.h(1)

22 qc.h(2)

23 qc.u(np.pi / 2, 2.7, np.pi , 2)

24 qc.u(np.pi / 2, np.pi , np.pi , 1)

25 qc.u(1.5708 , 0.314, np.pi , 0)

26

27 # End Diffuser

28

29 # Measurements

30 qc.measure(0, 0)

31 qc.measure(1, 1)

32 qc.measure(2, 2)

Listing 2: Example Grover Circuit (Phenotype Output)

Injected Oracle (Logged)

1 qc.h(2)

2 qc.mcx(list(range (2)), 2)

3 qc.h(2)

53

Appendix C

54

Appendix D

Transpiled Circuit Visualizations

This appendix provides full visual representations of the evolved circuits after

transpilation for execution on IBM’s ibm brisbane backend. These circuits re-

flect hardware-aligned, depth-minimized realizations of the evolved phenotypes.

Evolved Circuit for |000⟩

Figure 5: Full transpiled circuit for evolved |000⟩.

55

Appendix D

Evolved Circuit for |001⟩

Figure 6: Full transpiled circuit for evolved |001⟩.

Evolved Circuit for |010⟩

Figure 7: Full transpiled circuit for evolved |010⟩.

Evolved Circuit for |011⟩

Figure 8: Full transpiled circuit for evolved |011⟩.

56

Appendix D

Evolved Circuit for |100⟩

Figure 9: Full transpiled circuit for evolved |100⟩.

Evolved Circuit for |101⟩

Figure 10: Full transpiled circuit for evolved |101⟩.

Evolved Circuit for |110⟩

Figure 11: Full transpiled circuit for evolved |110⟩.

57

Appendix D

Evolved Circuit for |111⟩

Figure 12: Full transpiled circuit for evolved |111⟩.

58

Appendix E

GE in Quantum Machine Learning

The success of Grammatical Evolution (GE) in synthesizing efficient Grover cir-

cuits suggests broader potential in quantum algorithm discovery particularly

within Quantum Machine Learning (QML), where circuit design remains one

of the most open and exploratory frontiers.

GE offers a symbolic, interpretable, and architecture-sensitive method of gen-

erating novel QML model structures, including parameterized variational circuits,

encoding layers, and even kernel functions. Unlike gradient-based approaches or

neural architecture search, GE enables non-differentiable exploration of architec-

tural space while preserving logical and physical constraints.

Potential Application Areas

• Variational Quantum Circuits: GE could evolve layer-wise structures

tailored to specific datasets or noise profiles, producing compact and ex-

pressive ansätze.

• Feature Encoding: Symbolic grammars could represent flexible data en-

codings beyond fixed sinusoidal mappings, optimizing for circuit expressive-

ness and generalization.

• Quantum Kernels: GE could explore structured circuits that yield learn-

able quantum kernels for support vector machines or kernel ridge regression

models.

• Hybrid Classical–Quantum Systems: GE may assist in co-designing

59

Appendix E

classical preprocessing layers (e.g., PCA or Fourier filters) with downstream

quantum classifiers.

Challenges and Opportunities

Applying GE in QML also introduces unique challenges:

• The fitness function must account for model generalization, training stabil-

ity, and possibly non-convex loss surfaces.

• Simulating circuits during evolution may be computationally expensive for

high-dimensional inputs or deeper QML models.

• Integrating gradient-based fine-tuning with grammar-evolved architectures

requires careful interfacing between symbolic and numerical modules.

Nonetheless, the flexibility and symbolic transparency of GE make it a com-

pelling candidate for quantum machine learning research. As NISQ-class proces-

sors mature, GE could help us discover architectures that balance noise resilience,

data representational power, and real-device compatibility an essential triad for

practical quantum learning models.

60

	Abstract
	Data Source and Generative AI Declaration
	List of Tables
	List of Figures
	1 Introduction
	1.1 Background and Motivation
	1.2 Aims and Objectives
	1.3 Methodology
	1.4 Research Contribution
	1.5 Thesis Outline
	1.6 Summary

	2 Background
	2.1 Quantum Algorithms Overview
	2.1.1 Deutsch–Jozsa Algorithm
	2.1.2 Grover's Search Algorithm

	2.2 Grammatical Evolution
	2.2.1 GE for Quantum Circuit Synthesis

	2.3 Compilation and Transpilation in NISQ Devices
	2.3.1 Compilation Pipeline
	2.3.2 Transpilation Challenges

	2.4 Related Work on Circuit Synthesis
	2.5 Summary

	3 Methodology
	3.1 Framework Overview
	3.2 Deutsch–Jozsa Proof-of-Concept
	3.2.1 Grammar for DJ Circuits
	3.2.2 Fitness Function for DJ

	3.3 Grover Circuit Synthesis
	3.3.1 Grammar Design for Grover Circuits
	3.3.2 Fitness Function for Grover Circuits

	3.4 Toolchain and Evaluation Stack

	4 Experimental Setup
	4.1 Grover Circuit Configuration
	4.1.1 Baseline: Canonical Grover via Qiskit
	4.1.2 Evolved: Symbolically Generated Circuits

	4.2 Hardware Configuration
	4.3 Simulation Environment
	4.4 Evaluation Metrics
	4.5 Deutsch–Jozsa Experiment (Simulator Only)

	5 Results and Analysis
	5.1 Grover: Baseline vs Evolved Performance
	5.2 Gate Decomposition of Evolved Circuits
	5.3 Circuit Visualisation Examples
	5.4 Deutsch–Jozsa Simulation Results

	6 Conclusions and Future Directions
	6.1 Summary
	6.2 Conclusions
	6.3 Contributions
	6.4 Future Work

	References
	Appendix A: BNF Grammar Definitions
	Appendix B: Deutsch-Jozsa Experimental Results
	Appendix C: Code and Circuit Listings
	Appendix D: Transpiled Circuit Visualizations
	Appendix E: GE in Quantum Machine Learning

