
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/392160236

Evolving Hardware-Efficient Grover Circuits via Grammatical Evolution

Preprint · May 2025

DOI: 10.13140/RG.2.2.33761.21607

CITATIONS

0
READS

143

1 author:

Arinze Obidiegwu

University of Limerick

2 PUBLICATIONS 0 CITATIONS

SEE PROFILE

All content following this page was uploaded by Arinze Obidiegwu on 27 June 2025.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/392160236_Evolving_Hardware-Efficient_Grover_Circuits_via_Grammatical_Evolution?enrichId=rgreq-d37f59d6050f4a9e4d034da5e5bae598-XXX&enrichSource=Y292ZXJQYWdlOzM5MjE2MDIzNjtBUzoxMTQzMTI4MTUyMDEzMDE3N0AxNzUxMDE3NDE0NjQz&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/392160236_Evolving_Hardware-Efficient_Grover_Circuits_via_Grammatical_Evolution?enrichId=rgreq-d37f59d6050f4a9e4d034da5e5bae598-XXX&enrichSource=Y292ZXJQYWdlOzM5MjE2MDIzNjtBUzoxMTQzMTI4MTUyMDEzMDE3N0AxNzUxMDE3NDE0NjQz&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-d37f59d6050f4a9e4d034da5e5bae598-XXX&enrichSource=Y292ZXJQYWdlOzM5MjE2MDIzNjtBUzoxMTQzMTI4MTUyMDEzMDE3N0AxNzUxMDE3NDE0NjQz&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Arinze-Obidiegwu-2?enrichId=rgreq-d37f59d6050f4a9e4d034da5e5bae598-XXX&enrichSource=Y292ZXJQYWdlOzM5MjE2MDIzNjtBUzoxMTQzMTI4MTUyMDEzMDE3N0AxNzUxMDE3NDE0NjQz&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Arinze-Obidiegwu-2?enrichId=rgreq-d37f59d6050f4a9e4d034da5e5bae598-XXX&enrichSource=Y292ZXJQYWdlOzM5MjE2MDIzNjtBUzoxMTQzMTI4MTUyMDEzMDE3N0AxNzUxMDE3NDE0NjQz&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University_of_Limerick?enrichId=rgreq-d37f59d6050f4a9e4d034da5e5bae598-XXX&enrichSource=Y292ZXJQYWdlOzM5MjE2MDIzNjtBUzoxMTQzMTI4MTUyMDEzMDE3N0AxNzUxMDE3NDE0NjQz&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Arinze-Obidiegwu-2?enrichId=rgreq-d37f59d6050f4a9e4d034da5e5bae598-XXX&enrichSource=Y292ZXJQYWdlOzM5MjE2MDIzNjtBUzoxMTQzMTI4MTUyMDEzMDE3N0AxNzUxMDE3NDE0NjQz&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Arinze-Obidiegwu-2?enrichId=rgreq-d37f59d6050f4a9e4d034da5e5bae598-XXX&enrichSource=Y292ZXJQYWdlOzM5MjE2MDIzNjtBUzoxMTQzMTI4MTUyMDEzMDE3N0AxNzUxMDE3NDE0NjQz&el=1_x_10&_esc=publicationCoverPdf

Un
pu
bli
she
d w

ork
ing

dra
ft.

No
t fo
r d
istr
ibu
tio
n.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Evolving Hardware-Efficient Grover Circuits via Grammatical
Evolution

Arinze Obidiegwu
23271892@studentmail.ul.ie

University of Limerick
Limerick, Ireland

Douglas Mota Dias
douglas.dias@atu.ie

Atlantic Technological University
Galway, Ireland

Conor Ryan
conor.ryan@ul.ie

University of Limerick
Limerick, Ireland

Abstract
Grover’s algorithm provides a quadratic speedup for unstructured
search problems, yet its standard implementation becomes resource-
intensive when deployed on real quantum hardware. In this work,
we demonstrate that quantum circuits evolved via grammatical
evolution (GE) can outperform the canonical Grover design on
noisy intermediate-scale quantum (NISQ) devices. Using a sym-
bolic BNF grammar and hardware-aware evaluation, we evolved
Grover-like circuits for all 8 basis states of a 3-qubit system. On
IBM’s ibm_brisbane backend, and based on 10,000-shot executions,
the best evolved circuit achieved 97.7% quasi-fidelity for the |100⟩
target state, with the lowest at 88.4% for |110⟩. In contrast, circuits
generated using IBM’s official Grover notebook achieved a fidelity
range of only 57.7% to 68.5% under the same conditions. Evolved
circuits also reduced circuit depth and gate count by up to 94.3% and
93.5%, respectively. These results underscore the potential of sym-
bolic AI techniques to automatically synthesize hardware-efficient
quantum programs that outperform analytical baselines on today’s
real quantum processors.

CCS Concepts
• Theory of computation→ Quantum complexity theory; •
Computing methodologies → Evolutionary algorithms; • Hard-
ware→ Quantum technologies.

Keywords
quantum computing, Grover’s algorithm, grammatical evolution,
NISQ, quantum circuit synthesis
ACM Reference Format:
Arinze Obidiegwu, Douglas Mota Dias, and Conor Ryan. 2025. Evolving
Hardware-Efficient Grover Circuits via Grammatical Evolution. In Pro-
ceedings of Genetic and Evolutionary Computation Conference (GECCO ’25).
ACM, New York, NY, USA, 12 pages. https://doi.org/10.1145/XXXXXXX.
XXXXXXX

1 Introduction
Quantum algorithms offer the potential for exponential or quadratic
speedups over classical methods in domains such as unstructured

Unpublished working draft. Not for distribution.Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
GECCO ’25, Barcelona, Spain
© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-XXXX-X/25/07
https://doi.org/10.1145/XXXXXXX.XXXXXXX

search, optimization, and simulation. Among the most iconic is
Grover’s algorithm [7], which provides a quadratic advantage for
search tasks by iteratively amplifying the amplitude of a marked
quantum state. The canonical construction of Grover’s algorithm
comprises an oracle that flips the phase of the solution state, fol-
lowed by a diffuser that reflects amplitudes about the mean.

Although Grover’s algorithm is provably optimal in the ab-
stract circuit model, its real-world deployment on current noisy
intermediate-scale quantum (NISQ) hardware often yields disap-
pointing results. Physical devices impose strict architectural con-
straints—including limited qubit connectivity, gate infidelities, and
compiler-induced overheads—that distort circuit structure and de-
grade fidelity [1, 4, 5, 11, 13]. For instance, even IBM’s official imple-
mentation [8] of Grover’s algorithm on a 3-qubit system, evaluated
with 10000 shots and error mitigation, achieves only 65.9% fidelity
for the |000⟩ target state. This highlights the disconnect between
analytical optimality and practical hardware viability.

This disconnect motivates a core question: Can quantum algo-
rithms be automatically restructured or synthesized to better suit the
hardware they run on?

In this work, we answer this question affirmatively by applying
grammatical evolution (GE)—a form of symbolic genetic pro-
gramming—to synthesize hardware-efficient quantum circuits for
Grover-style search problems. GE uses a user-defined grammar to
evolve programs as symbolic expressions, enabling it to explore
structurally diverse and hardware-adaptive circuit configurations
beyond canonical templates [9, 14, 15]. While prior work has ex-
plored GE in simulated quantum contexts [15, 16], our study is the
first to evolve Grover circuits with direct execution and validation
on real quantum processors.

We focus on 3-qubit Grover search tasks and evolve dedicated cir-
cuits for all 8 possible marked basis states. Candidate solutions are
evaluated through a hybrid pipeline: initial evolution is conducted
in classical simulation, and the best individuals are subsequently
transpiled and executed on IBM’s superconducting ibm_brisbane
backend with 10,000-shot executions to ensure statistical robust-
ness.

Our results are striking. For the |000⟩ target state, a GE-evolved
circuit achieved 97.9%fidelity—over 30 percentage points higher
than IBM’s own benchmark Grover circuit. Across all 8 marked
states, evolved circuits consistently outperformed standard imple-
mentations, achieving fidelities between 88.4% and 97.7%, while
reducing circuit depth and gate count by up to 94.3% and 93.5%,
respectively.

These findings underscore the potential of symbolic AI methods
not merely as optimizers of hand-designed quantum algorithms,
but as generative engines capable of synthesizing novel, hardware-
native programs from scratch. Grammatical evolution provides

2025-06-22 07:22. Page 1 of 1–12.

https://orcid.org/0009-0006-1254-1746
https://doi.org/10.1145/XXXXXXX.XXXXXXX
https://doi.org/10.1145/XXXXXXX.XXXXXXX
https://doi.org/10.1145/XXXXXXX.XXXXXXX

Un
pu
bli
she
d w

ork
ing

dra
ft.

No
t fo
r d
istr
ibu
tio
n.

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

GECCO ’25, July 10–14, 2025, Barcelona, Spain Obidiegwu et al.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

a powerful framework for quantum algorithm discovery—one in
which circuit structure emerges from evolutionary pressure rather
than human intuition. This paradigm represents a shift toward
hardware-informed, data-driven quantum software design, which
may be critical for fully exploiting current and near-future NISQ
systems.

1.1 Background and Related Work
Grover’s algorithm [7] remains one of the foundational achieve-
ments in quantum computing, offering a quadratic speedup for
unstructured search problems. While its optimality in the query
model is well understood, deploying Grover’s algorithm on physical
quantum hardware—especially noisy intermediate-scale quantum
(NISQ) systems—introduces substantial practical challenges. Recent
empirical studies, such as that by AbuGhanem et al. [1], have shown
that standard implementations of Grover’s algorithm suffer signifi-
cant fidelity degradation, circuit depth inflation, and variability in
performance due to hardware-specific constraints.

To mitigate these issues, several compiler- and architecture-
aware techniques have been proposed. For instance, noise-adaptive
transpilation [11], advanced qubit routing strategies [5], and backend-
optimized compilation stacks like Qiskit [3] have made meaningful
progress in reducing runtime error and overhead. However, these
approaches typically operate post hoc—attempting to optimize cir-
cuit performance after the structure has already been fixed, often
without explicit regard for hardware constraints during design.

Our approach instead adopts a generative methodology, employ-
ing grammatical evolution (GE) to synthesize quantum circuits from
first principles. GE enables the symbolic construction of circuits
using a flexible, BNF-based grammar, allowing exploration beyond
traditional circuit templates. Prior work has demonstrated the fea-
sibility of evolving quantum programs using genetic programming
techniques [9, 15], albeit primarily in simulation. More recently,
Sünkel et al. [16] proposed a hybrid evolutionary framework com-
bining classical evolution with quantum simulation backends—but
again, evaluation remained limited to emulated environments.

We extend this line of research by validating evolved circuits on
real superconducting hardware. Although the evolutionary search
operates in simulation for efficiency, our top-performing circuits are
transpiled and executed on IBM’s ibm_brisbane backend. This hy-
brid evaluation loop incorporates real-device feedback into the final
selection phase, enabling practical assessment while maintaining a
tractable search process.

This work contributes to the broader area of quantum–classical
co-design [2], where algorithm development is informed by the
capabilities and limitations of specific hardware targets. By combin-
ing symbolic AI, evolutionary search, and real-device validation, we
propose a practical path forward for discovering quantum circuits
that are not just theoretically valid—but operationally effective on
today’s quantum machines.

1.2 Grover’s Algorithm
Grover’s algorithm [7] is a quantum search procedure that offers a
quadratic speedup over classical brute-forcemethods for identifying
a marked item in an unstructured database of size 𝑁 = 2𝑛 . The
algorithm initializes the system in a uniform superposition over

all computational basis states and then iteratively amplifies the
amplitude of the marked state using two key components: an oracle
and a diffuser.

The standard implementation comprises:
(1) An oracle 𝑂 𝑓 that applies a phase flip to the marked state

|𝑥⟩, such that 𝑂 𝑓 |𝑥⟩ = −|𝑥⟩, while leaving all other states
unchanged.

(2) A diffusion operator 𝐷 that performs inversion about the
mean, effectively amplifying the probability amplitude of
the marked state.

(3) Repeated application of the composite operator 𝐷 ·𝑂 𝑓 , ap-
proximately

⌊
𝜋
4
√
𝑁

⌋
times.

While Grover’s algorithm is mathematically elegant and prov-
ably optimal in the idealized query model, its implementation on
NISQ-era quantum hardware faces practical limitations. In particu-
lar, multi-controlled operations—such as those used in the oracle
and diffusion subroutines—require decomposition into native gate
sets, which significantly increases circuit depth and introduces ad-
ditional noise [10]. These overheads compound quickly on real
devices, reducing the fidelity of the algorithm’s output and limiting
its practical utility without careful hardware-aware optimization.

1.3 NISQ Hardware Limitations
Noisy intermediate-scale quantum (NISQ) devices [13] are funda-
mentally limited by a combination of architectural and physical
constraints, including short coherence times, limited qubit counts,
and imperfect gate fidelities. As a result, quantum circuits that
are efficient in theory often encounter substantial performance
degradation when deployed on real hardware due to the following
factors:

• Sparse connectivity: Most superconducting quantum pro-
cessors exhibit restricted qubit connectivity, requiring addi-
tional SWAP operations to facilitate interactions between
non-adjacent qubits [11]. These insertions inflate circuit
depth and introduce additional opportunities for noise.

• Gate decomposition overhead: Logical gates involving
multiple control qubits (e.g., multi-controlled Toffoli or Z
gates) are not natively supported and must be decomposed
into elementary 1- and 2-qubit operations [10]. This leads to
significant increases in gate count and execution time.

• Compiler variability:Backend-specific transpilation pipelines
apply heuristic optimizations that can yield inconsistent cir-
cuit structures across compilations [5], complicating repro-
ducibility and performance assessment.

For instance, the canonical 3-qubit Grover circuit—elegant in
its idealized form—can expand to over 160 layers in depth when
transpiled for IBM’s ibm_brisbane backend [1], making it highly
susceptible to decoherence and gate errors. These challenges high-
light the urgent need for circuit synthesis approaches that are
inherently hardware-aware, minimizing depth and noise exposure
from the outset.

1.4 Grammatical Evolution
Grammatical evolution (GE) [14] is a form of genetic programming
that evolves symbolic programs from a user-defined context-free

2025-06-22 07:22. Page 2 of 1–12.

Un
pu
bli
she
d w

ork
ing

dra
ft.

No
t fo
r d
istr
ibu
tio
n.

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Evolving Hardware-Efficient Grover Circuits GECCO ’25, July 10–14, 2025, Barcelona, Spain

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

grammar, typically specified in Backus-Naur Form (BNF). Genomes
are encoded as linear integer strings, which are mapped to syntacti-
cally valid structures through recursive rule expansion. This geno-
type–phenotype distinction enables flexible and modular search
spaces that can represent complex programs, expressions, or—relevant
here—quantum circuits.

In the domain of quantum algorithm design, GE provides a prin-
cipled framework for exploring non-standard circuit architectures.
By defining a grammar that includes both native quantum gate
primitives (e.g., h, cx, rz) and higher-level subroutines (e.g., or-
acle and diffuser templates), GE enables the automated discov-
ery of hardware-tailored circuits that deviate from textbook struc-
tures [15]. This symbolic search process allows the emergence of
compact, performant circuits that better align with the constraints
of real quantum hardware.

In our work, GE is used to evolve circuits that amplify a target ba-
sis state—e.g., |000⟩—in Grover-style search problems. A hardware-
aware fitness function drives the evolution process, defined as:

Fitness = 10 ·miss + (1 − 𝑝marked) + 𝜆 · gate_count (1)

Here, miss = 1 if the probability 𝑝marked of observing the target
state falls below a predefined threshold (e.g., 48%), and zero other-
wise. The term 𝜆 is a tunable penalty coefficient applied to the total
gate count, promoting shallow and efficient circuits. Individuals
that fail to compile or execute on the simulator are assigned infinite
fitness.

This formulation ensures that evolution is guided toward solu-
tions that maximize marked-state fidelity while minimizing circuit
complexity—two properties that are critically important in NISQ
settings. By integrating these physical considerations directly into
the fitness landscape, GE can produce circuits that are both func-
tionally effective and operationally viable.

2 Methodology
2.1 Standard Grover Implementation
To establish a performance baseline, we adapted the official Qiskit
tutorial implementation of Grover’s algorithm [8]. Our only mod-
ification was to vary the marked state across all 8 computational
basis states from |000⟩ to |111⟩.

Each circuit was constructed using the tutorial’s default ampli-
tude amplification structure, which includes 𝑘 =

⌊
𝜋
4
√
2𝑛

⌋
Grover it-

erations [7]. Circuits were transpiled using the generate_preset_pass_manager
function at optimization level 3, targeting IBM’s ibm_brisbane
backend [1]. We recorded transpilation metrics, including circuit
depth and gate count. Fidelity scores were computed from real-
device histogram outputs.

2.2 Grammatical Encoding of Circuit Space
We encoded the quantum circuit search space using a Backus–Naur
Form (BNF) grammar designed to support parameterized construc-
tions inspired by Grover’s algorithm. The grammar includes:

• Initialization and measurement routines.
• Oracle placeholders for injecting marked-state logic.
• Diffuser structures using Hadamard and 𝑋 /controlled gates.
• A gate set comprising rz, sx, cx, and rxx.

• Fixed-angle parameters such as 𝜋/2, 𝜋 , and 3𝜋/2.

Genome decoding was handled via the GRAPE library [6], a
Python-based implementation of grammatical evolution built on
DEAP. Integer genomes were mapped to Python circuit code and
converted into valid QuantumCircuit objects. Sandbox execution
ensured that malformed phenotypes or invalid circuits were filtered
out prior to evaluation.

2.3 Fitness Evaluation and Constraints
Each candidate circuit was evaluated on its ability to amplify a
specific marked state, using 10000 measurement shots. Fidelity
was defined as the empirical probability of measuring the correct
bitstring. Fitness was calculated using the expression:

Fitness = 10 ·miss + (1 − 𝑝marked) + 𝜆 · gate_count (2)

Here, miss = 1 if 𝑝marked < 0.48, and 0 otherwise. The regulariza-
tion parameter 𝜆 = 0.02 penalizes excessive gate usage. Circuits that
failed to decode, compile, or execute were assigned infinite fitness.
This function prioritizes both fidelity and circuit parsimony—two
key metrics for NISQ compatibility [5, 11, 13].

Figure 1: Evaluation pipeline for individual candidates, show-
ing genome decoding, oracle injection, circuit simulation,
and final fitness assignment.

2025-06-22 07:22. Page 3 of 1–12.

Un
pu
bli
she
d w

ork
ing

dra
ft.

No
t fo
r d
istr
ibu
tio
n.

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

GECCO ’25, July 10–14, 2025, Barcelona, Spain Obidiegwu et al.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

2.4 Hardware-Aware Evaluation Pipeline
After initial validation in Qiskit Aer, evolved circuits were tran-
spiled to IBM’s ibm_brisbane native gate set using the same pass
manager as for the baseline Grover circuits. Executions were per-
formed on real quantum hardware to observe fidelity and resource
performance under realistic noise conditions.

After execution, we analyzed the measurement outcomes to
evaluate how closely the circuits reached their target states. We
also collected circuit metrics like depth and gate count to compare
the evolved circuits against the standard Grover implementation.

2.5 Grammatical Evolution Parameters
The GE algorithm followed a steady-state elitist (1 + 𝜆) model over
100 generations. The hyperparameters used are listed in Table 1
lists the hyperparameters used.

Table 1: Grammatical Evolution Hyperparameters

Parameter Value
Population size 1000
Generations 100
Codon size 400
Genome representation List-based
Codon consumption Lazy
Min init tree depth 20
Max init tree depth 40
Max tree depth 50
Crossover probability 0.8
Mutation probability 0.01
Tournament size 5
Elite size 1
Fitness threshold (miss) 48%
Gate penalty coefficient (𝜆) 0.02

2.6 Grammatical Evolution Workflow

Figure 2: Grammatical evolution workflow for hardware-
efficient quantum circuit synthesis.

As illustrated in Figure 2, our GE pipeline integrates symbolic cir-
cuit generation with simulation-driven fitness evaluation. Starting
from a user-defined grammar, integer-based genotypes are decoded
into Qiskit circuits, which are executed, evaluated, and subjected to
evolutionary refinement. Evolutionary operators (crossover, muta-
tion, selection) steer the population toward low-depth, high-fidelity
solutions over successive generations.

2.7 Grammar Summary
The grammar defines a compositional search space over valid 3-
qubit Qiskit programs. A simplified snippet is shown below:

Figure 3: BNF grammar fragment for Grover circuit genera-
tion.

1 <Program> ::= <Initialize> <HadamardAll>
2 <GroverIterations> <Measure>
3
4 <GroverIterations> ::= <GroverIteration>
5 | <GroverIteration> <GroverIteration>
6
7 <GroverIteration> ::= <OracleBlock> <DiffuserBlock>
8
9 <SingleQubitGate> ::=
10 "qc.x(" <Qubit> ")"
11 | "qc.ry(" <Angle> "," <Qubit> ")"
12 | ...

3 Experiments
3.1 Experimental Setup
All experiments were conducted on IBM’s superconducting quan-
tum backend ibm_brisbane, accessed via the Qiskit Runtime frame-
work [3]. This 127-qubit device features a heavy-hex topology,

2025-06-22 07:22. Page 4 of 1–12.

Un
pu
bli
she
d w

ork
ing

dra
ft.

No
t fo
r d
istr
ibu
tio
n.

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Evolving Hardware-Efficient Grover Circuits GECCO ’25, July 10–14, 2025, Barcelona, Spain

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

which offers improved connectivity over planar grids while main-
taining fabrication feasibility [1]. It supports a native gate set com-
posed of rz, sx, x, and ecr operations [5].

We focused on 3-qubit Grover search problems, exhaustively
evaluating each of the 8 computational basis states from |000⟩ to
|111⟩. For every target state, we compared two circuit classes:

• Canonical Grover implementation: Based on IBM’s of-
ficial Qiskit Grover notebook [8], using the GroverOperator
circuit library interface to construct circuits with state-specific
oracles.

• Evolved circuits: Synthesized via grammatical evolution
(GE), optimized for fidelity and resource efficiency under
hardware constraints.

All circuits were executed using 10000 measurement shots. Prior
to hardware execution, circuits were validated using Qiskit Aer [3].
Transpilation was performed using Qiskit’s level-3 preset pass man-
ager [11], which applies aggressive optimization and routing strate-
gies. We collected both pre- and post-transpilation metrics, includ-
ing circuit depth, total gate count, and number of entangling (cx or
ecr) operations.

3.2 Baseline Grover Results
Canonical Grover circuits were executed across all 8 marked basis
states using Qiskit’s official Grover implementation notebook, with
only the marked state changed per run. Although the abstract,
uncompiled Grover circuit requires only 5–6 logical layers in theory,
the transpilation process—responsible for adapting the circuit to
hardware-native gates and connectivity constraints—introduces
significant overhead. This results in depths exceeding 175 layers
on IBM’s superconducting architecture. [13].

Across all target states, the baseline Grover circuits exhibited:
• Circuit depths ranging from 175 to 185, primarily due to
routing and entangling operations.

• Total gate counts between 277 and 290, with a significant
fraction composed of ecr, rz, and sx gates.

• Limited execution fidelity: For instance, the transpiled
|000⟩ circuit achieved only 63.3% fidelity even after quasi-
probability mitigation. The |110⟩ circuit was notably worse,
with fidelity dropping to 57.7%.

These outcomes reinforce the well-known limitations of deploy-
ing idealized quantum algorithms on NISQ hardware [2, 4]. Fi-
delity losses stem from circuit depth, crosstalk, and noise amplifica-
tion—factors aggravated by the decomposition of complex oracles
and diffusers.

3.3 Evolved Circuit Results
Grammatical evolution was used to independently synthesize a
custom circuit for eachmarked basis state. Candidates were selected
via a fitness function that rewarded high fidelity while penalizing
gate depth and usage of error-prone operations. Each circuit was
transpiled to the native gate set of ibm_brisbane and executed
using the same experimental workflow as the baseline.

Key findings include:
• Sharp reductions in circuit depth and total gates. For
example, the evolved |000⟩ circuit achieved 94.8% fidelity

with only 11 layers and 21 gates—down from 177 layers and
283 gates in the Grover baseline.

• Superior fidelity across all states. Every evolved circuit
outperformed its Grover counterpart in fidelity, with gains of
up to 33 percentage points. The evolved |100⟩ circuit reached
97.7%, compared to 68.5% for the baseline.

• Hardware-congruent structural patterns. Evolution con-
sistently favored shallow, low-overhead motifs that mini-
mized entanglement depth and avoided compilation-unfriendly
constructs. This yielded circuits well-matched to the native
operations of superconducting platforms [11, 12].

These results underscore the potential of symbolic evolution-
ary methods for quantum circuit design. Evolved circuits not only
achieved higher fidelity under real noise conditions but alsomapped
more efficiently to physical constraints. Table 2 and Table 4 sum-
marize these improvements across all marked states.

4 Results and Analysis
4.1 Evolved Circuit Performance
Table 2 summarizes the post-transpilation performance of the best
evolved circuits targeting each of the 8 computational basis states
in a 3-qubit Grover search task. Each metric was recorded after com-
piling to the native gate set of IBM’s ibm_brisbane backend [1].

Table 2: Hardware-mapped metrics for evolved circuits tar-
geting each 3-qubit marked state.

State Depth Total Gates ECR RZ SX X
000 11 21 2 10 4 2
001 12 26 2 12 8 1
010 10 18 2 9 4 0
011 12 20 2 8 4 3
100 12 22 2 10 4 3
101 18 34 4 16 10 1
110 21 39 5 19 11 1
111 11 20 2 10 4 1

Across all marked states, evolved circuits demonstrate consis-
tently shallow depths and reduced gate counts—two critical factors
in mitigating error accumulation and decoherence on NISQ de-
vices [2, 13]. Even the most complex evolved circuit (targeting 110)
required only 21 layers and 39 gates—orders of magnitude smaller
than its canonical counterpart.

To illustrate this structural efficiency, Figures 4, 5, and 6 dis-
play the hardware-mapped transpiled circuits for representative
evolved solutions. These visualizations highlight the sparse and
shallow layouts produced by GE when optimizing under hardware
constraints.

4.2 Comparison with Canonical Grover Circuits
To contextualize the gains, Table 3 presents analogous metrics
for the canonical Grover implementations post-transpilation. The
ballooning of circuit depth and gate count is largely attributable to

2025-06-22 07:22. Page 5 of 1–12.

Un
pu
bli
she
d w

ork
ing

dra
ft.

No
t fo
r d
istr
ibu
tio
n.

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

GECCO ’25, July 10–14, 2025, Barcelona, Spain Obidiegwu et al.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

Figure 4: Transpiled circuit for evolved |000⟩ phenotype,
mapped to ibm_brisbane.

Figure 5: Transpiled circuit for evolved |010⟩ phenotype,
mapped to ibm_brisbane.

Figure 6: Transpiled circuit for evolved |111⟩ phenotype,
mapped to ibm_brisbane.

Table 3: Hardware-mapped metrics for standard Grover cir-
cuits (post-transpilation).

State Depth Total ECR RZ SX X
000 177 283 37 143 90 10
001 181 288 39 146 91 9
010 175 277 37 143 90 4
011 185 290 39 148 91 9
100 183 289 39 146 91 10
101 180 286 39 145 91 8
110 182 285 39 147 91 5
111 178 282 37 144 90 8

the decomposition of multi-controlled gates and routing overhead
induced by ibm_brisbane’s heavy-hex topology [5, 11].

These results underscore that analytical elegance does not guar-
antee hardware efficiency [4, 12]. Despite Grover’s theoretical op-
timality, its standard implementation incurs substantial overhead

when compiled for real NISQ devices. In contrast, the evolved cir-
cuits—generated through symbolic search and guided by fidelity-
aware, resource-penalizing fitness functions—consistently outper-
form canonical designs across all tested metrics, including depth,
gate count, and native gate utilization.

To further highlight this contrast, Figure 7 compares the post-
transpilation depth and total gate count for both evolved and base-
line Grover circuits across all marked 3-qubit states.

Figure 7: Circuit depth and gate count comparison between
standard Grover and evolved circuits across all 3-qubit target
states. Evolved designs consistently achieve lower resource
usage.

Importantly, evolved circuits exhibit hardware-adaptive charac-
teristics such as:

• Gate sparsity: Prioritization of 1- and 2-qubit native opera-
tions (e.g., rz, sx, ecr) over entangling-heavy sequences.

• Structural regularity: Emergentmodularmotifs and reusable
subroutines, often aligned with the hardware’s coupling map.

• Transpilation resilience:Minimal structural inflation post-
compilation, indicating strong alignment between evolved
topologies and hardware constraints.

These traits, which are difficult to engineer by hand, emerge organ-
ically through grammatical evolution—underscoring its value as
a generative co-design method for practical quantum algorithms
under NISQ-era limitations.

5 Discussion
Our findings demonstrate that grammatical evolution (GE) can syn-
thesize quantum circuits that significantly outperform analytically
derived counterparts, such as Grover’s algorithm, in hardware-
constrained settings. While Grover’s design is provably optimal in
the ideal circuit model, it neglects critical physical factors—namely,
transpilation artifacts, native gate sets, and stochastic noise—that
dominate execution fidelity on NISQ devices. In contrast, evolved
circuits were implicitly shaped by these constraints through a fit-
ness function that penalized gate count, depth, and execution failure
(see Table 2 and Table 3).

2025-06-22 07:22. Page 6 of 1–12.

Un
pu
bli
she
d w

ork
ing

dra
ft.

No
t fo
r d
istr
ibu
tio
n.

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Evolving Hardware-Efficient Grover Circuits GECCO ’25, July 10–14, 2025, Barcelona, Spain

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

Recent work has empirically illustrated the scalability limits of
Grover’s algorithm on superconducting quantum systems, where
fidelity degrades and circuit overhead scales unfavorably with
problem size [1]. These observations motivate hardware-aware
algorithm synthesis approaches that are flexible and performance-
oriented, rather than structurally prescriptive.

Several core insights emerge from our experiments:
• Structure vs. performance: The evolved circuits frequently
diverged from Grover’s canonical oracle–diffuser structure.
In many cases, minimal diffuser elements or alternative sub-
routines sufficed to achieve high fidelity—challenging the
necessity of textbook formulations for near-term devices.

• Hardware alignment: GE consistently favored shallow,
low-overhead circuit motifs natively compatible with IBM’s
superconducting gate set. Complex operations such as multi-
controlled gates were naturally pruned by selection pressure
due to their adverse impact on fidelity and depth.

• Interpretability and modularity: Despite their stochastic
origin, evolved circuits often exhibited modular and inter-
pretable substructures. This suggests that symbolic AI meth-
ods like GE can yield not just performant but also human-
readable designs—beneficial for debugging, transferability,
and hybrid composition.

• Instance-specific tailoring: Since GE was applied indepen-
dently for each target bitstring, the resulting circuits were
tuned to specific oracle structures. This property aligns well
with emerging application domains—such as VQAs or hybrid
quantum classifiers—where instance-specific optimization is
required.

These outcomes reflect a broader shift in quantum software re-
search toward compilation-aware, hardware-native methodologies.
GE, as a symbolic and model-free technique, integrates naturally
into such workflows—yielding circuits that are not only performant
but also practical on today’s NISQ hardware.

5.1 Reframing Quantum Algorithm Discovery
The conventional pipeline for quantum algorithm design is inher-
ently top-down: a logical structure is first specified, then compiled
and mapped to hardware. Our results support a bottom-up alterna-
tive—where circuits emerge from evolutionary search, guided by
physical execution feedback.

This reframing has several implications:
• Fromanalytical templates to emergent programs: Evolved
circuits succeeded without mirroring Grover’s full structure.
High-fidelity behavior emerged through symbolic search un-
der hardware constraints, rather than from classical template
instantiation.

• Hardware-first synthesis:By embedding fidelity, gate count,
and compilation success directly into the objective function,
GE favored architectures that are efficient in real execu-
tion—highlighting the value of hardware-aware search.

• Quantum–classical co-design in practice: The evolution-
ary loop forms a hybrid system in which the classical opti-
mizer proposes candidates and the quantum backend sup-
plies empirical validation. This co-adaptive model supports
robustness to calibration drift and backend updates.

• Beyond human intuition: The most effective evolved cir-
cuits often bore little resemblance to canonical designs. Their
utility emerged not from handcrafted cleverness, but from
an unbiased symbolic exploration grounded in physical fea-
sibility.

While this study focuses on Grover-style search, the same GE
framework could generalize to other algorithm families—especially
in quantummachine learning, variational algorithms, or hybrid clas-
sifiers—where circuit structure is problem-dependent and hardware
efficiency is paramount.

Taken together, these findings motivate a paradigm shift: rather
than asking how to adapt theoretical algorithms for hardware, we
can ask what new algorithms are enabled by the hardware. Gram-
matical evolution offers one compelling approach to that ques-
tion—yielding not only valid but often superior solutions under
real-world constraints.

These insights provide the foundation for the concluding section,
where we discuss limitations, broader generalization, and future
directions for this line of work.

6 Conclusion
This work demonstrates that grammatical evolution (GE) can be ef-
fectively leveraged to synthesize compact, hardware-efficient quan-
tum circuits that outperform canonical designs under real-world
execution conditions. Applied to Grover-style search problems,
GE-produced circuits consistently exceeded the performance of
textbook implementations on IBM’s NISQ hardware—achieving
up to 97.7% fidelity across marked states, compared to 57–68% for
Qiskit’s standard Grover circuits.

Crucially, this success was achieved without incorporating ex-
plicit noise models or backend calibration data. Instead, the evolu-
tionary process implicitly adapted to hardware constraints by favor-
ing shallow, native-compatible gate structures through a fidelity-
aware, resource-penalizing fitness function. This validates GE as a
practical and scalable tool for quantum–classical co-design.

More broadly, our findings support a paradigm shift in quantum
software development: from hand-crafted, top-down algorithm de-
sign to bottom-up, hardware-guided program synthesis. Symbolic
methods such as GE can serve not only as performance optimizers
but also as creative engines—discovering efficient, interpretable,
and physically viable circuits from scratch. As quantum hardware
evolves, approaches like GE will play a critical role in bridging
the gap between abstract algorithmic potential and real-device per-
formance, thereby empowering more effective use of current and
next-generation quantum systems.

7 Limitations and Future Directions
While this study offers promising results, several limitations suggest
avenues for further investigation:

Scalability: Our experiments were limited to 3-qubit Grover
problems, which are computationally tractable and allow exhaus-
tive testing. Scaling GE to larger qubit counts will increase the
search space combinatorially, necessitating grammar modulariza-
tion, parallel simulation strategies, and possibly surrogate fitness
estimation techniques.

2025-06-22 07:22. Page 7 of 1–12.

Un
pu
bli
she
d w

ork
ing

dra
ft.

No
t fo
r d
istr
ibu
tio
n.

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

GECCO ’25, July 10–14, 2025, Barcelona, Spain Obidiegwu et al.

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

Oracle-Specific Designs: Each evolved circuit was tailored to
a fixed marked state. Although this is consistent with Grover’s
formulation for known targets, the synthesis of a single, general-
purpose circuit applicable to arbitrary marked states remains an
open challenge. Future work could explore evolving parameterized
circuit templates that generalize across various oracle classes.

Hardware Dependence: All circuits were evaluated on a sin-
gle real backend (ibm_brisbane). Although this enabled realistic
hardware-aware optimization, it may have introduced backend-
specific bias. Further validation on diverse quantum processors is
necessary to assess the portability and robustness of the evolved
solutions.

Baselines and Benchmarks: Our comparisons were made
against textbook Grover circuits generated via Qiskit. Incorporating
stronger baselines—such as transpiler-optimized variants, hand-
tuned implementations, or learned circuit templates—would further
strengthen the comparative analysis.

Evaluation Cost: Hardware-in-the-loop evaluations are expen-
sive and slow. Although classical simulation sufficed for the evo-
lutionary search, scaling to larger systems or more generations
may require hybrid pipelines utilizing surrogate models, transfer
learning, or selective sampling strategies.

Looking beyond Grover’s algorithm, the symbolic evolutionary
approach demonstrated here has broader applicability. Many areas
of quantum computing—such as quantum machine learning (QML),
variational algorithms (e.g., VQE and QAOA), and quantum simula-
tion—demand circuits that balance expressiveness with hardware
efficiency. GE provides a principled framework to explore these
trade-offs automatically, generating candidate circuits that align
with physical constraints.

In QML, for instance, evolved quantum circuit architectures
could enhance generalization while mitigating decoherence. Simi-
larly, GE can be used to discover ansätze that are tailored to specific
problems or devices within variational workflows. As the field
moves toward compiler-aware and architecture-specific quantum
software stacks, grammar-driven synthesis may become an essen-
tial tool for automated circuit generation, optimization, and co-
design.

2025-06-22 07:22. Page 8 of 1–12.

Un
pu
bli
she
d w

ork
ing

dra
ft.

No
t fo
r d
istr
ibu
tio
n.

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

Evolving Hardware-Efficient Grover Circuits GECCO ’25, July 10–14, 2025, Barcelona, Spain

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

A Evolutionary Convergence

Figure 8: Evolution metrics for target state |111⟩.

B Evolved Circuit Code Listings
Target State: |000⟩
Fitness Score: 0.5

Target State: |010⟩
Fitness Score: 0.52

Target State: |111⟩
Fitness Score: 0.50

1 "qc␣=␣QuantumCircuit(3,␣3)\n" \
2 "qc.h(0)\n" \
3 "qc.h(1)\n" \
4 "qc.h(2)\n" \
5 "##␣Begin␣Diffuser\n" \
6 "qc.h(0)\n" \
7 "qc.h(1)\n" \
8 "qc.h(2)\n" \
9 "qc.x(0)\n" \
10 "qc.x(1)\n" \
11 "qc.x(2)\n" \
12 "qc.h(2)\n" \
13 "qc.cx(0,␣2)\n" \
14 "qc.cx(1,␣2)\n" \
15 "qc.h(2)\n" \
16 "qc.x(0)\n" \
17 "qc.x(1)\n" \
18 "qc.x(2)\n" \
19 "qc.h(0)\n" \
20 "qc.h(1)\n" \
21 "qc.h(2)\n" \
22 "qc.h(1)\n" \
23 "qc.h(2)\n" \
24 "qc.u(1.5708,␣1.3,␣2*np.pi,␣0)\n" \
25 "qc.rxx(3.1415,␣1,␣0)\n" \
26 "##␣End␣Diffuser\n" \
27 "qc.measure(0,␣0)\n" \
28 "qc.measure(1,␣1)\n" \
29 "qc.measure(2,␣2)\n"

Listing 1: Evolved circuit for target state |000⟩

2025-06-22 07:22. Page 9 of 1–12.

Un
pu
bli
she
d w

ork
ing

dra
ft.

No
t fo
r d
istr
ibu
tio
n.

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

GECCO ’25, July 10–14, 2025, Barcelona, Spain Obidiegwu et al.

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1 "qc␣=␣QuantumCircuit(3,␣3)\n" \
2 "qc.h(0)\n" \
3 "qc.h(1)\n" \
4 "qc.h(2)\n" \
5 "##␣Begin␣Diffuser\n" \
6 "qc.h(0)\n" \
7 "qc.h(1)\n" \
8 "qc.h(2)\n" \
9 "qc.x(0)\n" \
10 "qc.x(1)\n" \
11 "qc.x(2)\n" \
12 "qc.h(2)\n" \
13 "qc.cx(0,2)\n" \
14 "qc.cx(1,2)\n" \
15 "qc.h(2)\n" \
16 "qc.x(0)\n" \
17 "qc.x(1)\n" \
18 "qc.x(2)\n" \
19 "qc.h(0)\n" \
20 "qc.h(1)\n" \
21 "qc.h(2)\n" \
22 "qc.ry(3*np.pi/2,␣0)\n" \
23 "qc.h(2)\n" \
24 "qc.ry(np.pi/2,␣1)\n" \
25 "##␣End␣Diffuser\n" \
26 "qc.measure(0,␣0)\n" \
27 "qc.measure(1,␣1)\n" \
28 "qc.measure(2,␣2)\n"

Listing 2: Evolved circuit for target state |010⟩

1 "qc␣=␣QuantumCircuit(3,␣3)\n" \
2 "qc.h(0)\n" \
3 "qc.h(1)\n" \
4 "qc.h(2)\n" \
5 "##␣Begin␣Diffuser\n" \
6 "qc.h(0)\n" \
7 "qc.h(1)\n" \
8 "qc.h(2)\n" \
9 "qc.x(0)\n" \
10 "qc.x(1)\n" \
11 "qc.x(2)\n" \
12 "qc.h(2)\n" \
13 "qc.cx(0,2)\n" \
14 "qc.cx(1,2)\n" \
15 "qc.h(2)\n" \
16 "qc.x(0)\n" \
17 "qc.x(1)\n" \
18 "qc.x(2)\n" \
19 "qc.h(0)\n" \
20 "qc.h(1)\n" \
21 "qc.h(2)\n" \
22 "qc.ry(np.pi/2,␣0)\n" \
23 "qc.ry(1.5708,␣1)\n" \
24 "qc.u(3*np.pi/2,␣np.pi/2,␣np.pi,␣2)\n" \
25 "##␣End␣Diffuser\n" \
26 "qc.measure(0,␣0)\n" \
27 "qc.measure(1,␣1)\n" \
28 "qc.measure(2,␣2)\n"

Listing 3: Evolved circuit for target state |111⟩

2025-06-22 07:22. Page 10 of 1–12.

Un
pu
bli
she
d w

ork
ing

dra
ft.

No
t fo
r d
istr
ibu
tio
n.

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

Evolving Hardware-Efficient Grover Circuits GECCO ’25, July 10–14, 2025, Barcelona, Spain

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

Table 4: Hardware fidelity and resource comparison across all 3-qubit basis states. Evolved circuits consistently outperform
standard Grover implementations in fidelity, depth, and gate efficiency.

Target State Circuit Type Fidelity Depth Gate Count Depth Reduction (%) Gate Reduction (%)
|000⟩ Evolved 94.8% 11 21 93.8% 92.6%

Grover 63.3% 177 283
|001⟩ Evolved 91.0% 12 26 93.4% 91.0%

Grover 66.0% 181 288
|010⟩ Evolved 96.1% 10 18 94.3% 93.5%

Grover 61.8% 175 277
|011⟩ Evolved 95.8% 12 20 93.5% 93.1%

Grover 63.8% 185 290
|100⟩ Evolved 97.7% 12 22 93.4% 92.4%

Grover 68.5% 183 289
|101⟩ Evolved 90.0% 18 34 90.0% 88.1%

Grover 67.3% 180 286
|110⟩ Evolved 88.4% 21 39 88.5% 86.3%

Grover 57.7% 182 285
|111⟩ Evolved 95.5% 11 20 93.8% 92.9%

Grover 62.9% 178 282

2025-06-22 07:22. Page 11 of 1–12.

Un
pu
bli
she
d w

ork
ing

dra
ft.

No
t fo
r d
istr
ibu
tio
n.

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

GECCO ’25, July 10–14, 2025, Barcelona, Spain Obidiegwu et al.

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

References
[1] Muhammad AbuGhanem. 2025. Characterizing Grover search algorithm on

large-scale superconducting quantum computers. Scientific Reports 15, 1 (2025),
1281. doi:10.1038/s41598-024-80188-6

[2] Muhammad A. Alam, Abdullah Ash-Saki, and Joydeep Ghosh. 2022. Classical
optimizers for noisy intermediate-scale quantum computers. ACM Computing
Surveys (CSUR) 55, 4 (2022), 1–37.

[3] Gadi Aleksandrowicz, Thomas Alexander, Pascal Barkoutsos, Luciano Bello,
Yotam Ben-Haim, David Bucher, Francisco J. Cabrera-Hernández, Juan Carballo-
Franquis, Anthony Chen, Chun-Fu Chen, et al. 2019. Qiskit: An Open-source
Framework for Quantum Computing. https://qiskit.org. doi:10.5281/zenodo.
2562111 Accessed May 2025.

[4] Sitan Chen, Jordan Cotler, Hsin-Yuan Huang, and Jerry Li. 2023. The complexity
of NISQ. Nature Communications 14, 6001 (2023). https://www.nature.com/
articles/s41467-023-41217-6

[5] Alec Cowtan, Steven Dilkes, Ross Duncan, Alexander Krajenbrink, Will Simmons,
and S. Sivarajah. 2020. Qubit routing and scheduling for NISQ era quantum
computers. Quantum Science and Technology 5, 3 (2020), 034010.

[6] Allan de Lima, Samuel Carvalho, Douglas Mota Dias, Enrique Naredo, Joseph P.
Sullivan, and Conor Ryan. 2022. GRAPE: Grammatical Algorithms in Python for
Evolution. Signals 3, 3 (2022), 642–663. doi:10.3390/signals3030039

[7] Lov K Grover. 1996. A fast quantum mechanical algorithm for database search.
Proceedings of the 28th Annual ACM Symposium on Theory of Computing (1996),
212–219.

[8] IBM Quantum. 2024. Grover’s Algorithm. https://learning.quantum.ibm.com/
tutorial/grovers-algorithm.

[9] Simon M. Lucas. 2004. Evolving quantum oracles with genetic programming. In
Congress on Evolutionary Computation (CEC). 885–890.

[10] Dmitri Maslov. 2016. Advantages of using relative-phase Toffoli gates with an
application to multiple control Toffoli optimization. Physical Review A 93, 2
(2016), 022311.

[11] Prakash Murali, Jonathan M. Baker, Ali Javadi Abhari, Frederic T. Chong, and
Margaret Martonosi. 2019. Noise-Adaptive Compiler Mappings for Noisy
Intermediate-Scale Quantum Computers. In Proceedings of the 24th International
Conference on Architectural Support for Programming Languages and Operating
Systems (ASPLOS). 1015–1029. doi:10.1145/3297858.3304075

[12] S. Muroya, K. Chatterjee, and T. A. Henzinger. 2025. Hardware-optimal quantum
algorithms. Proceedings of the National Academy of Sciences 122 (2025). doi:10.
1073/pnas.2419273122

[13] John Preskill. 2018. Quantum Computing in the NISQ era and beyond. Quantum
2 (2018), 79. doi:10.22331/q-2018-08-06-79

[14] Conor Ryan, J. J. Collins, and Michael O’Neill. 1998. Grammatical Evolution:
Evolving Programs for an Arbitrary Language. In Genetic Programming, Pro-
ceedings of the 1st European Workshop, EuroGP 1998 (Lecture Notes in Computer
Science, Vol. 1391). Springer, 83–96. doi:10.1007/BFb0055930

[15] Lee Spector. 2004. Automatic Quantum Computer Programming: A Genetic Pro-
gramming Approach. Genetic Programming, Vol. 7. Springer. doi:10.1007/978-1-

4419-9126-7
[16] Leo S"unkel, Philipp Altmann, Michael K"olle, Gerhard Stenzel, Thomas Gabor,

and Claudia Linnhoff-Popien. 2025. Quantum Circuit Construction and Optimiza-
tion through Hybrid Evolutionary Algorithms. arXiv preprint arXiv:2504.17561
(2025). https://arxiv.org/abs/2504.17561

2025-06-22 07:22. Page 12 of 1–12.

View publication stats

https://doi.org/10.1038/s41598-024-80188-6
https://qiskit.org
https://doi.org/10.5281/zenodo.2562111
https://doi.org/10.5281/zenodo.2562111
https://www.nature.com/articles/s41467-023-41217-6
https://www.nature.com/articles/s41467-023-41217-6
https://doi.org/10.3390/signals3030039
https://learning.quantum.ibm.com/tutorial/grovers-algorithm
https://learning.quantum.ibm.com/tutorial/grovers-algorithm
https://doi.org/10.1145/3297858.3304075
https://doi.org/10.1073/pnas.2419273122
https://doi.org/10.1073/pnas.2419273122
https://doi.org/10.22331/q-2018-08-06-79
https://doi.org/10.1007/BFb0055930
https://doi.org/10.1007/978-1-4419-9126-7
https://doi.org/10.1007/978-1-4419-9126-7
https://arxiv.org/abs/2504.17561
https://www.researchgate.net/publication/392160236

	Abstract
	1 Introduction
	1.1 Background and Related Work
	1.2 Grover's Algorithm
	1.3 NISQ Hardware Limitations
	1.4 Grammatical Evolution

	2 Methodology
	2.1 Standard Grover Implementation
	2.2 Grammatical Encoding of Circuit Space
	2.3 Fitness Evaluation and Constraints
	2.4 Hardware-Aware Evaluation Pipeline
	2.5 Grammatical Evolution Parameters
	2.6 Grammatical Evolution Workflow
	2.7 Grammar Summary

	3 Experiments
	3.1 Experimental Setup
	3.2 Baseline Grover Results
	3.3 Evolved Circuit Results

	4 Results and Analysis
	4.1 Evolved Circuit Performance
	4.2 Comparison with Canonical Grover Circuits

	5 Discussion
	5.1 Reframing Quantum Algorithm Discovery

	6 Conclusion
	7 Limitations and Future Directions
	A Evolutionary Convergence
	B Evolved Circuit Code Listings
	References

